
The dynamis of fast non-autonomoustravelling waves and homogenization. �S.ZelikInstitute for Problems of Information Transmission,Russian Aademy of SieneBolshoi Karetnii 19101447, GSP-4,Mosow, Russia.1 IntrodutionThe ellipti boundary value problema(�2t u+�xu)� " �tu� f(u) = g(t); uj�
 = 0; ujt=0 = u0 (1)in a semiylinder (t; x) 2 
+ := R+ � !, where ! is a bounded smoothdomain in Rn , u = (u1; � � � ; uk) is an unknown vetor funtion, f , g and u0are given vetor funtions, a and  are given onstant k � k-matries suhthat a + a� > 0 and  = � > 0, and " is assumed to be a small positiveparameter ("� 1), is studied.The problems of the type (1) arise studying the travelling wave solutionsof the non-autonomous evolution equations in a ylindrial domains 
 :=R�!. Indeed, onsider the seond order non-autonomous paraboli equationin (t; x) 2 
 ��v = a(�2t v +�xv)� f(v)� g(t� " �; x) (2)with the fast travelling wave external fore g(t � "�) (where n" � 1 is awave speed and the variable � plays the role of time). Then the problemof �nding the travelling wave solution (modulated by the external travellingwave g) v(�; t; x) := v(t� "�; x) leads to the ellipti boundary problem (1)in a ylinder 
. Applying the dynamial approah to studying the problem�This researh is partially supported by the Russian Foundation for Fundamental Re-searh (grant# 99-01-00304). 1



in the full ylinder (see e.g. [1℄, [3℄, [8℄, [14℄) we obtain the auxiliary problemof the type (1) in a semiylinder 
+. Note also that the problem (1) is ofindependent interest.It is assumed that the nonlinear term f(u) in (1) satis�es the followingassumptions1: f(v):v � �C; 2: f 0(v) � �K; 3: jf(v)j � C(1 + jvjq); 8v 2 Rk (3)for the appropriate onstants C and K and with the growth exponent q <qmax = n+2n�2 .It is assumed also that the external fore g 2 Cb(R; L2(!)) is almostperiodi with respet to t with values in L2(!). Reall (see e.g. [9℄) that itmeans by de�nition that the hullH(g) := [Thg; h 2 R℄Cb(R;L2(!)); (Thg)(t) := g(t+ h) (4)is ompat in Cb(R; L2(!)) (Here we have denoted by f�gV the losure inthe spae V ).The solution u of the equation (1) is de�ned to be a funtion, whihbelongs to W 2;2(
T ) for every T � 0 (
T := [T; T + 1℄ � !) and has the�nite norm kukW 2;2b (R+) = supT�0 ku;
T k2;2 <1 (5)and therefore we restrit ourselves to onsider only bounded with respet tot!1 solutions of the problem (1).Here and below kg; V kl;p := kgkW l;p(V ) and as usual W l;p means theSobolev spae of distributions whih derivatives up to the order l inlusivelybelonging to Lp. Moreover, we denote by W 2;2b (
+) the spae of funtionswhih have the �nite norm (5). The spaes W l;pb (
) and W l;pb (
+) an bede�ned analogously.It is natural to assume also that the initial data u0 belongs to the spaeV0 :=W 3=2;2(!)\ fu0j�! = 0g whih in fat the spae of traes of funtionsfrom W 2;2b (
+) \ fuj�! = 0g when t = 0 (see e.g. [13℄).The equations of the type (1) under the various assumptions on a, , f ,g and " have been studied in [1℄, [3℄, [10℄, [11℄, [14℄, [15℄.It is known (see e.g. [3℄, [15℄) that under our assumptions for every �xed" < "0 � 1 the problem (1) possesses a unique (bounded with respet tot!1) solution u(t) whih satis�es the estimateku;
T k2;2 � Q"(ku0kV0)e��T +Q"(kgkL2b ) (6)2



with a ertain monotoni funtion Q" depending only on f , a,  and " (andindependent of u0 and g) and positive �. Consequently, the problem (1)de�nes a non-autonomous dynamial system U "g (t; �) in the phase spae V0(a proess in V0 using the terminology of [4℄) by formulaUg(t; �)u� = u(t) where u(t); t � � is a solution of (1) with u(�) = u� (7)Using the standard skew produt tehnique (see e.g. [4℄, [6℄) this proess anbe extended to a semigroup ating in a larger phase spae. Indeed, onsiderwith the initial problem (1) a family of problems of the type (1) with allright-hand sides �(t) belonging to the hull (4) of the initial external fore g:a(�2t u+�xu)� " �tu� f(u) = �(t); � 2 H(g) (8)and the orresponding family of proesses fU "� (t; �); � 2 H(g); t � �g atingin V0. Then the semigroup S"t ating in the extended phase spae V0�H(g)an be de�ned in the following way (see e.g. [4℄):S"t(u0; �) := (U�(t; 0)u0; Tt�); t � 0; � 2 H(g); u0 2 V0 (9)It is not diÆult to prove (see [14℄), using the dissipative estimate (6) and thefat that the hull H(g) is ompat in Cb(R; L2(!)) that the semigroup (9)possesses a (global) attrator A " in V0�H(g). The projetion of A" := �1A "of this attrator to the �rst omponent (V0) is de�ned to be the (uniform)attrator for the initial equation (1).Note that the attrator A" is generated by all bounded solutions of thefamily of equations (8) whih is de�ned in a full ylinder 
:A" = [�2H(g)K"� jt=0 (10)where K"� is a set of all bounded in W 2;2b (
) solutions of the equation (8)with the right-hand side � or whih is the same the set of all travellingwave solutions of the evolution equation (2) (with g is replaed by �). Thisjusti�es the attrator's approah to study the travelling wave solutions.The main aim of the paper is to study the behaviour of the attratorsA" when " ! 0. To this end we make the time resaling t ! "t and writethe problem in the following more onvenient form:a("2�2t u+�xu)� �tu� f(u) = g"(t); ujt=0 = u0 (11)where g"(t) = g"(t; x) := g( t" ; x). Evidently the attrators of the equations(1) and (11) oinide. Note that we obtain the rapidly t-osillating external3



fore g( t") in the right-hand side of (11) and onsequently it is natural tointrodue it's averaging (see [9℄)bg(x) := limT!1 2T Z T�T g(t; x) dt (12)and write the limit (" = 0) equation in the following form:�tu = a�xu� f(u)� bg; ujt=0 = u0 (13)The equation (13) has the form of autonomous dissipative reation-di�usionequation and onsequently (see e.g. [2℄, [12℄) possesses a (global) attratorA0 in the phase spae L2(!).Theorem 0.1. Let the above assumptions hold. Then the attrators A"onverge to the attrator A0 in the spaes W 1�Æ;2(!) for every Æ > 0 in thefollowing sense: lim"!0distW 1�Æ;2(!)(A";A0) = 0 (14)where dist means the non-symmetri Hausdor� distane between sets.Assume now that the limit attrator A0 is exponential, i.e.distL2(!)(StB;A0) � C(B)e��t (15)for every bounded subset B � L2(!). Here St is a semigroup generated bythe autonomous equation (13), � > 0, and the onstant C(B) depends onkBkL2 . It is known that (15) is true for generi bg at least if the equation(13) possesses a Lyapunov funtion, e.g. if a = a� and f(u) = ruF (u) (see[2℄).Theorem 0.2. Let the assumptions of previous theorem hold, let thelimit attrator be exponential and let the almost-periodi funtion g(t) � bghave bounded primitive in L2(!), i.e.G(T ) := Z T0 (g(t)� bg) dt; kG(T )kL2(!) � C(g); 8T � 0 (16)Then the following estimate is valid:distL2(!)(A";A0) � Cg"� (17)where 0 < � < 1 and Cg an be alulated expliitly.Note that the assumption (16) is evidently valid for any periodi funtiong but may be not valid for more general almost periodi ones. Some suÆientonditions on g to satisfy this assumption are given at the end of Setion 1.4



Note also that the estimates (17) for di�erenes between the regularattrators for semigroups whih possesse global Lyapunov funtions anddepend regularly on a parameter " have been obtained in [2℄.These results have been reently extended in [5℄ to regular attratorsof some autonomous reation-di�usion equations with spatially osillatingoeÆients (x=") and their homogenizations.2 The estimates for solutions in a half-ylinderIn this Setion we derive a number of estimates for the solutions of theauxiliary problema("2�2t u+�xu)� �tu� f(u) = g"(t); ujt=0 = u0 (18)in a half-ylinder 
+ whih are useful to study the behaviour of the attra-tors.We start with the uniform with respet to "! 0 analogue of the estimate(6) for this equation.Theorem 1.1 Let the above assumptions hold. Then for every " < "0small enough the problem (18) possesses a unique solution whih satis�esthe following estimate:ku;
T k�" � Q(ku0kV "0 )e��T +Q(kgkL2b ) (19)where by de�nitionku;
T k2�" := "4k�2t u;
T k20;2 + k�tu;
T k20;2 + ku;
T k22;2; (20)ku0k2V "0 := "ku0k2V0+ku0k20;2 and the monotoni funtion Q and the exponent� are independent of " < "0.The uniform estimates of the form (19) are more or less known for thepartiular ases of equations (18) ([3℄, [15℄) but the rigorous proof of (19) israther tehnial so we omit it here (see [16℄ for details).Remark 1.1 Note that if we put formally g0(t) := bg, where bg has beende�ned by (12) then taking formally " = 0 in (20) we obtain well knownestimate for the solutions of the limit paraboli equation (13). Note also thatthe norm in V "0 is a uniform with respet to " norm in the trae spae att = 0 for �"(
0), so the estimate (19) implies partiularly that the solutionsu(t) are uniformly with respet to " bounded in V "0 .Our next task is to estimate the di�erene between the individual solu-tions of (18) and (13). These estimates are of fundamental signi�ane for5



estimating the di�erenes between the orresponding attrators whih willbe derived in the next Setion.Theorem 2.2 Let the assumptions of previous Theorem hold. Assumein addition that the right-hand sides g satis�es (16)Let u"(t) and bu(t) be the solutions of the problems (18) and (13) respe-tively suh that u"(0) = bu(0) = u0. Thenku"(t)� bu(t)k0;2 � C1"1=2eK1t (21)where the onstants C1 and K1 are independent of " and uniform with respetto bounded in V "0 sets of u0.If the nonlinear term satis�es the additional regularity assumptionjf 0(u)j � C(1 + juj4=(n�2)) (22)and the primitive G(T ) is bounded not only in L2(!) but in W 1;20 (!), thenthe estimate (21) remains true with "1 instead of "1=2 in the right-hand side:ku"(t)� bu(t)k0;2 � C"eK1T (23)The sketh of the proof. Denote v(t) = u"(t) � bu(t). Then this funtionevidently satis�es the equation�tv = a�xv � (f(u")� f(bu))� h"(t); vjt=0 = 0 (24)where h"(t) := "2�2t u"(t) + (g"(t) � bg). Multiplying this equation by v(t)and integrating over (t; x) 2 [0; T ℄ � ! we obtain using the monotoniityassumption f 0 � �K and the positiveness of matries  and a that�(kv(T )k20;2+Z T0 kv(t)k21;2 dt) � K Z T0 kv(t)k20;2 dt+Z T0 (h"(t); v(t))dt (25)with the appropriate positive �. In order to apply the Gronewal inequalityto (25) we should estimate only the last integral in the right-hand side of it.To this end we deompose it in a sum of two integrals:I1(T ) := "2 Z T0 (�2t u"(t); v(t))dt; I2(T ) := Z T0 (g"(t)� bg; v(t))dtLet us introdue a funtion G"(T ) := R T0 (g"(t) � bg)dt. Then, evidentlyG"(T ) = "G(T="). Thus, (16) implies thatkG"(T )k0;2 � C" (26)6



and the assumptions of the seond part of the theorem imply kG(T )k1;2 �C".Integrating by parts in I1 and using the fats that �tu" and �tv is uni-formly bounded with respet to " in L2b(
+) (aording to Theorem 1.1) wederive thatI1 = �"2 Z T0 (�tu"; �tv) dt+ "2(�tu"(T ); v(T )) � C�T"2 + �kv(T )k20;2 (27)where � > 0 an be hosen arbitrary small. We have also used here the evi-dent fat that "k�tu"(T )k0;2 is uniformly bounded with respet to ". Indeed,aording to the standard interpolation inequality,"k�tu"(T )k0;2 � C �"2k�2t u"kL2([T;T+1℄;L2)�1=2 �k�tu"kL2([T;T+1℄;L2)�1=2 � C1Thus, it remains to estimate I2. Integrating by parts again we obtain thatI2 = �Z T0 (G"(t); �tv(t)) dt+ (G"(T ); v(T )) (28)The seond term an be easily estimated by Holder inequality and the as-sumption (26): (G"(T ); v(T )) � C�"2 + �kv(T )k20;2Estimating the �rst integral (we denote it by I12 ) in the right-hand side of(28) by Holder inequality and using (26) and the fat that �tv is uniformlybounded in L2b(
+) one an easlily derive the rough estimate I12 � C"Twhere in ontrast to the previous estimates we have only "1 but not "2.This leads (after the inserting all obtained inequality to the right-hand sideof (25) and applying the Gronewal inequality) to the rough estimate (21)with the rate of onverging "1=2 instead of "1.Our task now is to derive more sharp estimate for the integral I12 underthe assumptions of the seond part of Theorem 1.2. To this end we express�tv from the equation (24) and insert it to I12 :I12 = �Z T0 (G"(t); �1a�xv(t))dt+ Z T0 �G"(t); �1(f(u")� f(bu))� dt++ Z T0 (G"(t); �1G0"(t)) dt = J1 + J2 + J3 (29)In order to estimate J1 we integrate by part with respet to x and use theestimate krxG"(t)k0;2 � C" together with Holder inequality:J1 = Z T0 (rxG"(t); �1arxv(t))dt � C�"2T + �Z T0 kv(t)k21;2dt (30)7



Here we essentially use the fat that G" equals zero on the boundary �!.(Without this assumption we would obtain the additional boundary termsafter the integration by parts for whih we annot derive the good estimate).In order to estimate J2 we use the fat that, aording to Theorem 1.1the funtions u"(t) are uniformly with respet to " bounded in W 1;2(!),the growth assumption (22) and Sobolev embedding theorem. Indeed, sinef(u") � f(bu) = R 10 f 0(su" + (1 � s)bu) dsv then applying Holder inequalitywith the exponents p1 = p2 = 2n=(n� 2) and p3 = n=2 and the embeddingW 1;2 � Lp1 we will haveJ2 � C Z T0 (1 + ku"(t)k0;p1 + kbu(t)k0;p1)4=(n�2)kv(t)k0;p1kG"(t)k0;p1 dt �C1 Z T0 (1 + ku"(t)k1;2 + kbu(t)k1;2)4=(n�2)kv(t)k1;2kG"(t)k1;2 dt �� C2"2T + �Z T0 kv(t)k21;2dt (31)Note that the integral J3 an be alulated expliitly:J3 = 1=2 �G"(T ); �1G"(T )� � C"2 (32)Inserting the estimates (29){(32) in (28) we obtain thatI2(T ) � C"2(1 + T ) + �Z T0 kv(t)k21;2 dt+ �kv(T )k20;2 (33)Inserting the estimates (27) and (33) in (25), taking � small enough andapplying the Gronewal inequality we derive the estimate (23). Theorem 1.2is proved.Let us formulate now some suÆient onditions for almost periodi right-hand sides g to satisfy the assumptions of Theorem 1.2. To this end we reall(see e.g. [9℄ for details) that every almost periodi in Cb(R; L2(!)) funtiong possesses a Fourier expansiong(t) = 1Xk=�1 g�k(x)ei�kt (34)where f�kg � R is ountable set of Fourier modes for f and the orrespond-ing amplitudes g�k 2 L2(!) and satisfy the estimate1Xk=�1 kg�kk20;2 <1 (35)8



Moreover, bg(x) = g0 (Here we de�ne g� � 0 if � =2 f�kg).Proposition 1.1. Let the Fourier amplitudes g�k of the almost periodifuntion g satisfy the assumptionX�k 6=0 1j�kj kg�kk0;2 <1 (36)Then the funtion G(T ) satis�es the inequality (16). Analogously ifX�k 6=0 1j�kj kg�kk1;2 <1 (37)then kG(T )k1;2 � C.Proof. Let us verify (16) using the Fourier expansion (34). Indeed,subtrating bg = g0 in (34) and integrating over t we derive thatG(t) = X�k 6=0 g�k(x)1=(i�k) �ei�kt � 1� (38)Taking the L2-norm from the both sides of (38) and using (36) we obtain(16). The seond part of the proposition an be veri�ed analogously. Propo-sition 1.1 is proved.Corollary 1.1. Let the assumptions of Theorem 1.1 hold and let thefuntion g satis�es (36). Then the estimate (21) hold for the di�erene ofthe non-averaged u"(t) and 'averaged' bu(t) solutions of (18). If in additionG(t) belongs to W 1;20 (!) and the assumptions (22) and (37) hold then theimproved estimate (23) is valid.Remark 1.2. Note that we have used the non-natural assumption thatG(t)j�! = 0 (whih means that the osillations deay near the boundary) inorder to obtain the estimate (23) (with "1 instead "1=2). This suppositionoured to be nonessential under the assumptions of Corollary 1.1 and anbe removed (see [16℄) so we use it only in order to simplify the proofs.We onlude this Setion by onsidering the ase of so alled quasiperi-odi right-hand sides.Example 1.1. Quasiperiodi funtions. In this ase (by de�nition)there exists a �nite vetor of frequenies � = (�1; � � � ; �m) 2 Rm , m > 1suh that �k = (�; l(k)) :=Pmi=1 �i � l(k)i for the appropriate l(k) 2 Zm and�i are rationally independent. Then (34) readsg(t) = Xl2Zm glei(�;l)t (39)9



Moreover, it is known that for every suh g 2 Cb(R; L2(!)) there exist a 2�-periodi with respet to every zi, i = 1; � � � ;m funtion � 2 Cb(Rm ; L2(!))suh that g(t) = �(�1z1; � � � ; �mzm); �(z; x) = Xl2Zm gl(x)ei(z;l) (40)(In a fat (40) gives another equivalent de�nition of a quasiperiodi fun-tion).In order to verify the ondition (36) whih reads in our ase as I :=Pl2Zm;l 6=0 kglk0;2=j(�; l)j <1 we reall that due to the theory of Diophan-tine approximations for every Æ > 0 and for almost every � 2 Rm (withrespet to Lebesgue measure) the following estimate is valid:j(�; l)j � C�jlj�m�Æ; l 6= 0 (41)Assume that � is hosen in suh a way that (41) hold. Then the sum I anbe estimated byI � C Xl2Zm jljm+Ækglk0;2 � C(Xl 6=0 jlj2(m+Æ��))1=2(Xl 6=0 jlj2�kglk20;2)1=2 (42)Note that the �rst integral in (42) is �nite if 2(m + Æ � �) < �m, i.e.� > 3m=2+ Æ and the seond one is �nite for every g suh that the funtion� from the representation (40) belonging to C�b (Rm ; L2(!)).Thus, for every � satisfying (41) and every periodi � 2 C�b (Rm ; L2(!))with � > Æ + 3m=2 the funtion (40) satis�es the assumption (36).3 The attrators.In this Setion we give a sketh of the proof of Theorems 0.1 and 0.2 whihis based on the estimates obtained in the previous Setion.We start with the proof of Theorem 0.1. Indeed, it follows form theestimate (19) of Theorem 1.1 that the attrators A" are uniformly boundedin in the norms of V "0 and partiularly in the norm of W 1;20 (!):kA"k1;2 � C; " < "0 (43)So in order to prove the upper semi-ontinuity (14) it is suÆient to verifythat if u"n 2 A"n and u"n ! u0 when "n ! 0 weakly in W 1;20 then u0 2 A0.Then we will have the upper semiontinuity in a weak toplogy of W 1;2(!)10



and onsequently (due to the ompatness of the embeddingW 1�Æ;2 �W 1;2){ the upper semiontinuity in the spaes W 1�Æ;2(!).Aording to the attrator's struture theorem (see (10)), there exists asequene �n 2 H(g) and a omplete bounded solutions u"n(t) t 2 R of theequations a("2n�2t u"n +�xu"n)� �tu"n � f(u"n) = �n(t="n) (44)suh that u"n = u"n(0). Our task now is to pass to the limit n!1 in (44).To this end we reall, that aording to Theorem 1.1, u"n(t) are uniformlybounded in �"(
T ) for every T 2 R. Thus, passing to a subsequene ifneessary, we may assume that for every T 2 R,�tu"n(t)+ �tbu(t) in L2(
T ); and u"n(t) + bu(t) in W 2;2(
T ) (45)and the limit funtion bu is bounded with respet to t, i.e �tbu;�xbu 2 L2b(
)and bu(0) = u0. So, it remains to prove that the funtion bu(t) satis�es thelimit equation (13). Then (10) will imply that u0 2 A0.Note that the onvergene (45) together with a growth restritions (3)admits to pass to the limit in the left-hand side of (44) in a standard way(see e.g. [2℄). The passing to the limit in the right hand side of this equationis based on the following lemma.Lemma 2.1 Let g 2 Cb(R; L2(!)) be almost periodi with a hull H(g).Let also �n 2 H(g) and "n ! 0 when n!1. Then for every T 2 R�n(t="n)+ bg (46)weakly in L2(
T ).Indeed, sine the almost periodi ow is stritly ergodi then it followsfrom the Birkgho�{Hinhin ergodi theorem (see e.g. [7℄) that the L2-limitbg = limT!1 12T Z T�T �(t)dt (47)is uniform with respet to � 2 H(g). The assertion of the lemma is a simpleorollary of this fat (see [16℄ for details). Lemma 2.1 is proved. Theorem0.1 is proved.Proof of Theorem 0.2. In a fat the result of this Theorem is a simpleorollary of Theorem 1.2. Indeed, assume that (16) is valid for the initialright-hand side g. Then it is not diÆult to verify that it is valid uniformlywith respet to � 2 H(g) and onsequently the estimate (21) is also validuniformly with respet to � 2 H(g). Namely, let u";�(t) be a solution of11



the equation (18) with the right hand side �(t="), � 2 H(g) and let bu(t) bethe orresponding solution (u";�(0) = bu(0) = u0) of the limit problem (13).Then ku";�(t)� bu(t)k0;2 � C"1=2eK1t (48)uniformly with respet � 2 H(g) and bounded in V "0 sets of initial data u0.Assume now that � 2 A". Aording to the attrator's struture theoremthere exists a omplete bounded trajetory u"(t), t 2 R of the equation (18)with the right-hand side � 2 H(g). Let us �x an arbitrary T > 0 andonsider the trajetory bu(t) of the limit equation suh that bu(0) = u"(�T ).Then (sine A" are uniformly bounded in V "0 ) (48) implies thatk�� bu(T )k0;2 � C"1=2eK1T (49)From the other side sine A0 is exponential thendistL2(!)(bu(T );A0) � C1e��T (50)Combining (49) and (50) we dedue thatdistL2(!)(�;A0) � C1e��T + C"1=2eK1T (51)Taking the optimal value for T (solving the equation C1e��T = C"1=2eK1T )in the estimate (51) we will havedistL2(!)(�;A0) � C2"�; � = �2(K1 + �) (52)Sine � 2 A" is arbitrary then (52) proves Theorem 0.2.Remark 2.1. The assumption (16) an be weakened in the followingway: kG(T )k0;2 � CT 1��; � > 0 (53)Then kG"(T )k0;2 � C"�T 1�� and arguing as in the proof of Theorem 1.2 and0.2 we derive the estimate (17) with � = ��2(K1+�) . Note that (53) looks notrestritive beause this estimate with � = 0: kG(T )k0;2 � CT is evidentlyvalid for every almost periodi funtion g.The main results of the paper are obtained jointly with Prof. M.I.Vishik.Referenes[1℄ A.V.Babin, 'Attrator of a semigroup of multi-valued mappings orre-sponding to an ellipti equation', Izv. Ross. Aad. Nauk Ser. Mat., 58,(1994), 3{18. 12
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