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1 Introduction

The elliptic boundary value problem
a(@Fu+ Apu) = 20— f(u) = g(t); ulpo =0; ulg=uo (1)

in a semicylinder (¢t,z) € Q4 := Ry X w, where w is a bounded smooth
domain in R”, u = (u',---,u¥) is an unknown vector function, f, g and wu
are given vector functions, a and <y are given constant k£ X k-matrices such
that ¢ + ¢* > 0 and v = v* > 0, and ¢ is assumed to be a small positive
parameter (¢ < 1), is studied.

The problems of the type (1) arise studying the travelling wave solutions
of the non-autonomous evolution equations in a cylindrical domains Q :=
Rxw. Indeed, consider the second order non-autonomous parabolic equation

n (t,z) € Q

Oy = aldFv + Agv) = f(v) — g(t — Ln,) (2)

with the fast travelling wave external force g(t — 2n) (where y\e > 1is a
wave speed and the variable n plays the role of time). Then the problem
of finding the travelling wave solution (modulated by the external travelling
wave g) v(n,t,z) := v(t — 2n,z) leads to the elliptic boundary problem (1)
in a cylinder Q. Applying the dynamical approach to studying the problem
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in the full cylinder (see e.g. [1], [3], [8], [14]) we obtain the auxiliary problem
of the type (1) in a semicylinder Q. Note also that the problem (1) is of
independent interest.

It is assumed that the nonlinear term f(u) in (1) satisfies the following
assumptions

L f(v)w > =C; 2. f'(v) = =K; 3. |f()| <C(L+]v|"); YweR" (3)

for the appropriate constants C' and K and with the growth exponent q <
Amax = Z—f%

It is assumed also that the external force g € Cy(R, L?(w)) is almost
periodic with respect to ¢ with values in L?(w). Recall (see e.g. [9]) that it

means by definition that the hull
H(g) == [Thg b € Rl oy (Thg)(8) i= glt + h) (4)

is compact in Cy(R, L?(w)) (Here we have denoted by {-}y the closure in
the space V).

The solution u of the equation (1) is defined to be a function, which
belongs to W22(Qy) for every T > 0 (Qp := [T, T + 1] x w) and has the
finite norm

lullz2 e, = 50p 10, el < o0 )

and therefore we restrict ourselves to consider only bounded with respect to
t — oo solutions of the problem (1).

Here and below ||g, Vi, := [lgllwtr(y and as usual W' means the
Sobolev space of distributions which derivatives up to the order [ inclusively
belonging to LP. Moreover, we denote by Wb2 (24 the space of functions
which have the finite norm (5). The spaces W,”(€2) and W}”(92,) can be
defined analogously.

It is natural to assume also that the initial data ug belongs to the space
Vo := W3/22(w) N {ug|s, = 0} which in fact the space of traces of functions
from Wb2’2(§2+) N {uly, =0} when t =0 (see e.g. [13]).

The equations of the type (1) under the various assumptions on a, v, f,
g and € have been studied in [1], [3], [10], [11], [14], [15].

It is known (see e.g. [3], [15]) that under our assumptions for every fixed
£ < g9 < 1 the problem (1) possesses a unique (bounded with respect to
t — o0o) solution u(t) which satisfies the estimate

lu, @7 ll2,2 < Qe(lluollve)e™" + Qe (llgll2) (6)



with a certain monotonic function Q. depending only on f, a, v and ¢ (and
independent of uy and g) and positive . Consequently, the problem (1)
defines a non-autonomous dynamical system Ug(Z,7) in the phase space Vj
(a process in Vj using the terminology of [4]) by formula

Uy(t, T)ur = u(t) where u(t), t > 7 is a solution of (1) with u(r) = u, (7)

Using the standard skew product technique (see e.g. [4], [6]) this process can
be extended to a semigroup acting in a larger phase space. Indeed, consider
with the initial problem (1) a family of problems of the type (1) with all
right-hand sides £(t) belonging to the hull (4) of the initial external force g:

a(@Fu+ Apu) = Lo — f(w) =€), € € H(g) ®)

and the corresponding family of processes {U¢ (t,7),{ € H(g),t > 7} acting
in V5. Then the semigroup S§ acting in the extended phase space Vj x H(g)
can be defined in the following way (see e.g. [4]):

Si(uo,f) = (Uﬁ(tv 0)u07Tt§)7 t>0, (€ H(g)a ug € Vo (9)

It is not difficult to prove (see [14]), using the dissipative estimate (6) and the
fact that the hull H(g) is compact in Cy(R, L?(w)) that the semigroup (9)
possesses a (global) attractor A® in Vy x H(g). The projection of A® := TTy A®
of this attractor to the first component (Vj) is defined to be the (uniform)
attractor for the initial equation (1).

Note that the attractor A is generated by all bounded solutions of the
family of equations (8) which is defined in a full cylinder Q:

A” = Ugen(g) K¢l (10)

where K is a set of all bounded in Wb2 2(2) solutions of the equation (8)
with the right-hand side ¢ or which is the same the set of all travelling
wave solutions of the evolution equation (2) (with g is replaced by &). This
justifies the attractor’s approach to study the travelling wave solutions.

The main aim of the paper is to study the behaviour of the attractors
A® when ¢ — 0. To this end we make the time rescaling ¢ — ¢t and write
the problem in the following more convenient form:

a(628t2u + Ayu) —yOu — f(u) = g-(t), ul,_qg=1uo (11)

where g.(t) = g-(t,x) := g(é,x). Evidently the attractors of the equations
(1) and (11) coincide. Note that we obtain the rapidly t-oscillating external



force g(£) in the right-hand side of (11) and consequently it is natural to
introduce it’s averaging (see [9])

. .2 (7
ia) = Jim 7 [ glta)di (12)

and write the limit (¢ = 0) equation in the following form:
You = alyu — f(u) =g, ul,_g=uop (13)

The equation (13) has the form of autonomous dissipative reaction-diffusion
equation and consequently (see e.g. [2], [12]) possesses a (global) attractor
A" in the phase space L?(w).

Theorem 0.1. Let the above assumptions hold. Then the attractors A°
converge to the attractor A° in the spaces W'=%%(w) for every § > 0 in the
following sense:

lim distyyi-5.2(,) (A%, A”) = 0 (14)

e—0

where dist means the non-symmetric Hausdorff distance between sets.
Assume now that the limit attractor A° is exponential, i.e.

distrs(, (S:B, A%) < C(B)e™! (15)

for every bounded subset B C L?(w). Here S; is a semigroup generated by
the autonomous equation (13), v > 0, and the constant C'(B) depends on
|Bl|z2. It is known that (15) is true for generic g at least if the equation
(13) possesses a Lyapunov function, e.g. if a = a* and f(u) = V,F(u) (see
[2]).

Theorem 0.2. Let the assumptions of previous theorem hold, let the
limit attractor be exponential and let the almost-periodic function g(t) —g
have bounded primitive in L?(w), i.e.

T
G(T)i= [ a0 =Bt [GT <Ol YT 20 (16
Then the following estimate is valid:
dist () (A%, A%) < Cye” (17)

where 0 < k < 1 and Cy can be calculated explicitly.

Note that the assumption (16) is evidently valid for any periodic function
g but may be not valid for more general almost periodic ones. Some sufficient
conditions on g to satisfy this assumption are given at the end of Section 1.



Note also that the estimates (17) for differences between the regular
attractors for semigroups which possesse global Lyapunov functions and
depend regularly on a parameter ¢ have been obtained in [2].

These results have been recently extended in [5] to regular attractors
of some autonomous reaction-diffusion equations with spatially oscillating
coefficients (z/e) and their homogenizations.

2 The estimates for solutions in a half-cylinder

In this Section we derive a number of estimates for the solutions of the
auxiliary problem

a(e®0fu+ Agu) —y0iu — f(u) = go(t), ul,_y = uo (18)

in a half-cylinder €2 which are useful to study the behaviour of the attrac-
tors.

We start with the uniform with respect to ¢ — 0 analogue of the estimate
(6) for this equation.

Theorem 1.1 Let the above assumptions hold. Then for every e < &gy
small enough the problem (18) possesses a unique solution which satisfies
the following estimate:

lu, Q7llae < Q(lluollvg)e T +Q(llglrz) (19)

where by definition
lu, rlRe = 4107w, @l 5 + 100w, Qrl[§ 2 + 1w, QI3 5, (20)

Hu0||%/0E := elluoll, +luoll§ 2 and the monotonic function Q and the exponent
a are independent of € < €g.

The uniform estimates of the form (19) are more or less known for the
particular cases of equations (18) ([3], [15]) but the rigorous proof of (19) is
rather technical so we omit it here (see [16] for details).

Remark 1.1 Note that if we put formally go(¢) := g, where g has been
defined by (12) then taking formally ¢ = 0 in (20) we obtain well known
estimate for the solutions of the limit parabolic equation (13). Note also that
the norm in Vj is a uniform with respect to € norm in the trace space at
t =0 for A-(Q), so the estimate (19) implies particularly that the solutions
u(t) are uniformly with respect to ¢ bounded in V.

Our next task is to estimate the difference between the individual solu-
tions of (18) and (13). These estimates are of fundamental significance for



estimating the differences between the corresponding attractors which will
be derived in the next Section.

Theorem 2.2 Let the assumptions of previous Theorem hold. Assume
in addition that the right-hand sides g satisfies (16)

Let u(t) and u(t) be the solutions of the problems (18) and (13) respec-
tiwely such that u:(0) = u(0) = ug. Then

lue (8) = @(t) o2 < Cre'/Zefr! (21)

where the constants Cy and Ky are independent of € and uniform with respect
to bounded in Vi sets of ug.
If the nonlinear term satisfies the additional reqularity assumption

[ (w)] < C(1+ [u /"2 (22)

and the primitive G(T) is bounded not only in L?(w) but in Wol’Q(w), then
the estimate (21) remains true with €' instead of €'/ in the right-hand side:

lue () = @(t)llo,2 < Cee’T (23)

The sketch of the proof. Denote v(t) = u.(t) — u(t). Then this function
evidently satisfies the equation

V0w = algv — (f(ue) = f(@)) — he(t); vl =0 (24)
where h.(t) := £20?u.(t) + (g-(t) — g). Multiplying this equation by v(t)

and integrating over (t,z) € [0,T] X w we obtain using the monotonicity
assumption f' > —K and the positiveness of matrices v and a that

T T T
a(||v(T>||3,2+/0 I dt) < K /0 ||v(t>||%,2dt+/0 (he (), 0(t))dt (25)

with the appropriate positive . In order to apply the Gronewal inequality
to (25) we should estimate only the last integral in the right-hand side of it.
To this end we decompose it in a sum of two integrals:

T T
I(T) = ¢? /0 (Ouc (1), v(t)dt; Ty(T) := /0 (0:(t) — G, v(t))dt

Let us introduce a function G.(T) := fOT(gg(t) — g)dt. Then, evidently
G:(T) = eG(T/e). Thus, (16) implies that

|G- (T) o < Ce (26)



and the assumptions of the second part of the theorem imply ||G(T)|12 <
Ce.

Integrating by parts in I; and using the facts that dyu. and v is uni-
formly bounded with respect to € in L?(Q) (according to Theorem 1.1) we
derive that

T
I = —52/ (Oyue, Opv) dt + € (Opue (T),v(T)) < C,Te* + plv(T)|I§ (27)
0

where i1 > 0 can be chosen arbitrary small. We have also used here the evi-
dent fact that ||0;u.(T)||o,2 is uniformly bounded with respect to €. Indeed,
according to the standard interpolation inequality,

1/2 1/2
llOpu (T oz < C (E210%ucll 2 rsn.2) > (100l (o) < C

Thus, it remains to estimate I5. Integrating by parts again we obtain that

T
I— - /0 (G- (1), D (1)) dt + (Go(T),v(T)) (25)

The second term can be easily estimated by Holder inequality and the as-
sumption (26):
(G=(T),v(T)) < Cpe® + pl|v(T)

Estimating the first integral (we denote it by I1) in the right-hand side of
(28) by Holder inequality and using (26) and the fact that 0yv is uniformly
bounded in LZ(Q) one can easlily derive the rough estimate I; < CeT
where in contrast to the previous estimates we have only €' but not £2.
This leads (after the inserting all obtained inequality to the right-hand side
of (25) and applying the Gronewal inequality) to the rough estimate (21)
with the rate of converging '/? instead of e'.

Our task now is to derive more sharp estimate for the integral I under
the assumptions of the second part of Theorem 1.2. To this end we express
Oy from the equation (24) and insert it to I5:

16,2

T T
Il = _/0 (Gg(t),ylasz(t))dt-l-/O (Ge(t),y " (f (ue) — f(@))) di+

T
4 / GOy G dt = T+ Tot+ s (29)
0

In order to estimate J; we integrate by part with respect to x and use the
estimate |V,G.(t)]|0,2 < Ce together with Holder inequality:

T T
Jiy = / (VxGa(t)77_1avxv(t))dt < Cu52T + N/ ||U(t)||%,2dt (30)
0 0

7



Here we essentially use the fact that G equals zero on the boundary dw.
(Without this assumption we would obtain the additional boundary terms
after the integration by parts for which we cannot derive the good estimate).

In order to estimate Jo we use the fact that, according to Theorem 1.1
the functions w.(¢) are uniformly with respect to £ bounded in W'?(w),
the growth assumption (22) and Sobolev embedding theorem. Indeed, since
flus) — f(u) = fol f'(su: + (1 — s)u) dsv then applying Holder inequality
with the exponents p; = po = 2n/(n — 2) and p3 = n/2 and the embedding
Wh2 c LPt we will have

T
Jo < 0/0 (L + [lae (B oo + 1FD No,0)* "2 o) llogp, |Ge (B lo,pr it <

G:(t)|l1,2dt <

T
01/0 (L e llrz + @@ 1.2) "2 o)l 2

T
<CoTotp [ oI i (31)
0
Note that the integral J3 can be calculated explicitly:
Jy = 1/2 (G.(T),y'G(T)) < C< (32)

Inserting the estimates (29)—(32) in (28) we obtain that

T
L(T) < CE(1+T) + /0 @I de+ oy (33)

Inserting the estimates (27) and (33) in (25), taking p small enough and
applying the Gronewal inequality we derive the estimate (23). Theorem 1.2
is proved.

Let us formulate now some sufficient conditions for almost periodic right-
hand sides g to satisfy the assumptions of Theorem 1.2. To this end we recall
(see e.g. [9] for details) that every almost periodic in Cy(R, L2 (w)) function
g possesses a Fourier expansion

9(t) = D oy (@)e! (34)

k=—00

where {a;} C R is countable set of Fourier modes for f and the correspond-
ing amplitudes g,, € L?(w) and satisfy the estimate

> lgaullfz < oo (35)

k=—o00



Moreover, g(z) = go (Here we define g, = 0 if a ¢ {ay}).
Proposition 1.1. Let the Fourier amplitudes gq, of the almost periodic
function g satisfy the assumption

1
> —lgaxlloz < oo (36)

o o]

Then the function G(T) satisfies the inequality (16). Analogously if

1
> llgaylle < o0 (37)

= ||

then ||G(T)|12 < C.
Proof. Let us verify (16) using the Fourier expansion (34). Indeed,
subtracting g = gp in (34) and integrating over ¢ we derive that

G(t) = gay()1/(icy) (e —1) (38)

a#0

Taking the L2-norm from the both sides of (38) and using (36) we obtain
(16). The second part of the proposition can be verified analogously. Propo-
sition 1.1 is proved.

Corollary 1.1. Let the assumptions of Theorem 1.1 hold and let the
function g satisfies (36). Then the estimate (21) hold for the difference of
the non-averaged u.(t) and ’averaged’ u(t) solutions of (18). If in addition
G(t) belongs to WOI’Z(w) and the assumptions (22) and (37) hold then the
improved estimate (23) is valid.

Remark 1.2. Note that we have used the non-natural assumption that
G(t)|5, = 0 (which means that the oscillations decay near the boundary) in
order to obtain the estimate (23) (with e! instead £'/2). This supposition
occured to be nonessential under the assumptions of Corollary 1.1 and can
be removed (see [16]) so we use it only in order to simplify the proofs.

We conclude this Section by considering the case of so called quasiperi-
odic right-hand sides.

Example 1.1. Quasiperiodic functions. In this case (by definition)
there exists a finite vector of frequencies 8 = (f1,--+,8m) € R™, m > 1
such that o, = (B,1(k)) := Y.~ Bi-I(k); for the appropriate [(k) € Z™ and
B; are rationally independent. Then (34) reads

g(t) =Y ge'@t (39)

lezm

9



Moreover, it is known that for every such g € Cy(R, L?(w)) there exist a 27-
periodic with respect to every z;, i = 1,---,m function ® € Cy(R™, L?(w))
such that

9(t) = D(Brz1, -\ Brzm); Blzm) = 3 q@)ef™D (40)
lez,m

(In a fact (40) gives another equivalent definition of a quasiperiodic func-
tion).

In order to verify the condition (36) which reads in our case as I :=
> iezmizo l19llo,2/1(8,1)] < oo we recall that due to the theory of Diophan-
tine approximations for every § > 0 and for almost every f € R™ (with
respect to Lebesgue measure) the following estimate is valid:

[(B,1)] > Cplt] ™%, 1#0 (41)

Assume that g is chosen in such a way that (41) hold. Then the sum I can
be estimated by

1<C S ™ glloa < OO PH=N ST P grl ) (42)
lezm 1£0 1£0

Note that the first integral in (42) is finite if 2(m 4+ § — @) < —m, i.e.
a > 3m/2+ § and the second one is finite for every g such that the function
® from the representation (40) belonging to C®(R™, L?(w)).

Thus, for every 3 satisfying (41) and every periodic ® € C2*(R™, L*(w))
with a > 0 + 3m/2 the function (40) satisfies the assumption (36).

3 The attractors.

In this Section we give a sketch of the proof of Theorems 0.1 and 0.2 which
is based on the estimates obtained in the previous Section.

We start with the proof of Theorem 0.1. Indeed, it follows form the
estimate (19) of Theorem 1.1 that the attractors A® are uniformly bounded
in in the norms of V and particularly in the norm of W01’2(w):

[A%]12 < C, e <eo (43)

So in order to prove the upper semi-continuity (14) it is sufficient to verify
that if u., € A°" and u., — up when ¢, — 0 weakly in I/VUI’2 then ug € A°.
Then we will have the upper semicontinuity in a weak toplogy of W2?(w)

10



and consequently (due to the compactness of the embedding W'=%? ¢ W?)
— the upper semicontinuity in the spaces W'~ %2(w).

According to the attractor’s structure theorem (see (10)), there exists a
sequence &, € H(g) and a complete bounded solutions u., (t) t € R of the
equations

a’(‘giaguan + Amuan) — YOsue,, — f(uan) =&n (t/gn) (44)

such that u., = u., (0). Our task now is to pass to the limit n — oo in (44).
To this end we recall, that according to Theorem 1.1, u. (¢) are uniformly
bounded in A.(Q27) for every T € R. Thus, passing to a subsequence if
necessary, we may assume that for every T € R,

Qe (t) — Bia(t) in LA(Qr), and ue, () — a(t) in W22(Qr)  (45)

and the limit function % is bounded with respect to ¢, i.e 9;u, A € L3 ()
and ©(0) = up. So, it remains to prove that the function u(¢) satisfies the
limit equation (13). Then (10) will imply that uo € A°.

Note that the convergence (45) together with a growth restrictions (3)
admits to pass to the limit in the left-hand side of (44) in a standard way
(see e.g. [2]). The passing to the limit in the right hand side of this equation
is based on the following lemma..

Lemma 2.1 Let g € Cy(R, L?(w)) be almost periodic with a hull H(g).
Let also &, € H(g) and &, — 0 when n — oco. Then for every T' € R

En(t/en) — G (46)

weakly in L?(Qr).
Indeed, since the almost periodic flow is strictly ergodic then it follows
from the Birkghoff-Hinchin ergodic theorem (see e.g. [7]) that the L2-limit

T
= lim — [ ¢@)dt (47)

is uniform with respect to £ € H(g). The assertion of the lemma is a simple
corollary of this fact (see [16] for details). Lemma 2.1 is proved. Theorem
0.1 is proved.

Proof of Theorem 0.2. In a fact the result of this Theorem is a simple
corollary of Theorem 1.2. Indeed, assume that (16) is valid for the initial
right-hand side g. Then it is not difficult to verify that it is valid uniformly
with respect to £ € H(g) and consequently the estimate (21) is also valid
uniformly with respect to { € H(g). Namely, let u.¢(t) be a solution of

11



the equation (18) with the right hand side £(t/¢), £ € H(g) and let u(t) be
the corresponding solution (u.¢(0) = @(0) = ug) of the limit problem (13).
Then
e g (£) = (t) o0 < Ce'/Ze" (48)
uniformly with respect ¢ € H(g) and bounded in Vj sets of initial data wy.
Assume now that ¢ € A®. According to the attractor’s structure theorem
there exists a complete bounded trajectory u.(t), ¢ € R of the equation (18)
with the right-hand side £ € H(g). Let us fix an arbitrary " > 0 and
consider the trajectory @(t) of the limit equation such that @(0) = u.(=T).
Then (since A® are uniformly bounded in V) (48) implies that

I — AT o < CV/2eR0T (49)
From the other side since A? is exponential then
dist 2, (@(T), A%) < Cre T (50)
Combining (49) and (50) we deduce that

diStL2(w)(¢, .40) < CleﬂjT + Cel2eKT (51)

Taking the optimal value for T (solving the equation Cje ¥T = Cel/2eK1T)
in the estimate (51) we will have

v

disth(w)(QbaAO) < Cye”, k= m

(52)
Since ¢ € A° is arbitrary then (52) proves Theorem 0.2.

Remark 2.1. The assumption (16) can be weakened in the following
way:

IG(T) o2 <CT" P, B>0 (53)

Then ||G(T)|jo2 < Ce®T'~P and arguing as in the proof of Theorem 1.2 and
0.2 we derive the estimate (17) with x = % Note that (53) looks not
restrictive because this estimate with § = 0: ||G(T)|jo2 < CT is evidently
valid for every almost periodic function g.

The main results of the paper are obtained jointly with Prof. M.I. Vishik.
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