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eBolshoi Karetnii 19101447, GSP-4,Mos
ow, Russia.1 Introdu
tionThe ellipti
 boundary value problema(�2t u+�xu)� 
" �tu� f(u) = g(t); uj�
 = 0; ujt=0 = u0 (1)in a semi
ylinder (t; x) 2 
+ := R+ � !, where ! is a bounded smoothdomain in Rn , u = (u1; � � � ; uk) is an unknown ve
tor fun
tion, f , g and u0are given ve
tor fun
tions, a and 
 are given 
onstant k � k-matri
es su
hthat a + a� > 0 and 
 = 
� > 0, and " is assumed to be a small positiveparameter ("� 1), is studied.The problems of the type (1) arise studying the travelling wave solutionsof the non-autonomous evolution equations in a 
ylindri
al domains 
 :=R�!. Indeed, 
onsider the se
ond order non-autonomous paraboli
 equationin (t; x) 2 
 ��v = a(�2t v +�xv)� f(v)� g(t� 
" �; x) (2)with the fast travelling wave external for
e g(t � 
"�) (where 
n" � 1 is awave speed and the variable � plays the role of time). Then the problemof �nding the travelling wave solution (modulated by the external travellingwave g) v(�; t; x) := v(t� 
"�; x) leads to the ellipti
 boundary problem (1)in a 
ylinder 
. Applying the dynami
al approa
h to studying the problem�This resear
h is partially supported by the Russian Foundation for Fundamental Re-sear
h (grant# 99-01-00304). 1



in the full 
ylinder (see e.g. [1℄, [3℄, [8℄, [14℄) we obtain the auxiliary problemof the type (1) in a semi
ylinder 
+. Note also that the problem (1) is ofindependent interest.It is assumed that the nonlinear term f(u) in (1) satis�es the followingassumptions1: f(v):v � �C; 2: f 0(v) � �K; 3: jf(v)j � C(1 + jvjq); 8v 2 Rk (3)for the appropriate 
onstants C and K and with the growth exponent q <qmax = n+2n�2 .It is assumed also that the external for
e g 2 Cb(R; L2(!)) is almostperiodi
 with respe
t to t with values in L2(!). Re
all (see e.g. [9℄) that itmeans by de�nition that the hullH(g) := [Thg; h 2 R℄Cb(R;L2(!)); (Thg)(t) := g(t+ h) (4)is 
ompa
t in Cb(R; L2(!)) (Here we have denoted by f�gV the 
losure inthe spa
e V ).The solution u of the equation (1) is de�ned to be a fun
tion, whi
hbelongs to W 2;2(
T ) for every T � 0 (
T := [T; T + 1℄ � !) and has the�nite norm kukW 2;2b (R+) = supT�0 ku;
T k2;2 <1 (5)and therefore we restri
t ourselves to 
onsider only bounded with respe
t tot!1 solutions of the problem (1).Here and below kg; V kl;p := kgkW l;p(V ) and as usual W l;p means theSobolev spa
e of distributions whi
h derivatives up to the order l in
lusivelybelonging to Lp. Moreover, we denote by W 2;2b (
+) the spa
e of fun
tionswhi
h have the �nite norm (5). The spa
es W l;pb (
) and W l;pb (
+) 
an bede�ned analogously.It is natural to assume also that the initial data u0 belongs to the spa
eV0 :=W 3=2;2(!)\ fu0j�! = 0g whi
h in fa
t the spa
e of tra
es of fun
tionsfrom W 2;2b (
+) \ fuj�! = 0g when t = 0 (see e.g. [13℄).The equations of the type (1) under the various assumptions on a, 
, f ,g and " have been studied in [1℄, [3℄, [10℄, [11℄, [14℄, [15℄.It is known (see e.g. [3℄, [15℄) that under our assumptions for every �xed" < "0 � 1 the problem (1) possesses a unique (bounded with respe
t tot!1) solution u(t) whi
h satis�es the estimateku;
T k2;2 � Q"(ku0kV0)e��T +Q"(kgkL2b ) (6)2



with a 
ertain monotoni
 fun
tion Q" depending only on f , a, 
 and " (andindependent of u0 and g) and positive �. Consequently, the problem (1)de�nes a non-autonomous dynami
al system U "g (t; �) in the phase spa
e V0(a pro
ess in V0 using the terminology of [4℄) by formulaUg(t; �)u� = u(t) where u(t); t � � is a solution of (1) with u(�) = u� (7)Using the standard skew produ
t te
hnique (see e.g. [4℄, [6℄) this pro
ess 
anbe extended to a semigroup a
ting in a larger phase spa
e. Indeed, 
onsiderwith the initial problem (1) a family of problems of the type (1) with allright-hand sides �(t) belonging to the hull (4) of the initial external for
e g:a(�2t u+�xu)� 
" �tu� f(u) = �(t); � 2 H(g) (8)and the 
orresponding family of pro
esses fU "� (t; �); � 2 H(g); t � �g a
tingin V0. Then the semigroup S"t a
ting in the extended phase spa
e V0�H(g)
an be de�ned in the following way (see e.g. [4℄):S"t(u0; �) := (U�(t; 0)u0; Tt�); t � 0; � 2 H(g); u0 2 V0 (9)It is not diÆ
ult to prove (see [14℄), using the dissipative estimate (6) and thefa
t that the hull H(g) is 
ompa
t in Cb(R; L2(!)) that the semigroup (9)possesses a (global) attra
tor A " in V0�H(g). The proje
tion of A" := �1A "of this attra
tor to the �rst 
omponent (V0) is de�ned to be the (uniform)attra
tor for the initial equation (1).Note that the attra
tor A" is generated by all bounded solutions of thefamily of equations (8) whi
h is de�ned in a full 
ylinder 
:A" = [�2H(g)K"� jt=0 (10)where K"� is a set of all bounded in W 2;2b (
) solutions of the equation (8)with the right-hand side � or whi
h is the same the set of all travellingwave solutions of the evolution equation (2) (with g is repla
ed by �). Thisjusti�es the attra
tor's approa
h to study the travelling wave solutions.The main aim of the paper is to study the behaviour of the attra
torsA" when " ! 0. To this end we make the time res
aling t ! "t and writethe problem in the following more 
onvenient form:a("2�2t u+�xu)� 
�tu� f(u) = g"(t); ujt=0 = u0 (11)where g"(t) = g"(t; x) := g( t" ; x). Evidently the attra
tors of the equations(1) and (11) 
oin
ide. Note that we obtain the rapidly t-os
illating external3



for
e g( t") in the right-hand side of (11) and 
onsequently it is natural tointrodu
e it's averaging (see [9℄)bg(x) := limT!1 2T Z T�T g(t; x) dt (12)and write the limit (" = 0) equation in the following form:
�tu = a�xu� f(u)� bg; ujt=0 = u0 (13)The equation (13) has the form of autonomous dissipative rea
tion-di�usionequation and 
onsequently (see e.g. [2℄, [12℄) possesses a (global) attra
torA0 in the phase spa
e L2(!).Theorem 0.1. Let the above assumptions hold. Then the attra
tors A"
onverge to the attra
tor A0 in the spa
es W 1�Æ;2(!) for every Æ > 0 in thefollowing sense: lim"!0distW 1�Æ;2(!)(A";A0) = 0 (14)where dist means the non-symmetri
 Hausdor� distan
e between sets.Assume now that the limit attra
tor A0 is exponential, i.e.distL2(!)(StB;A0) � C(B)e��t (15)for every bounded subset B � L2(!). Here St is a semigroup generated bythe autonomous equation (13), � > 0, and the 
onstant C(B) depends onkBkL2 . It is known that (15) is true for generi
 bg at least if the equation(13) possesses a Lyapunov fun
tion, e.g. if a = a� and f(u) = ruF (u) (see[2℄).Theorem 0.2. Let the assumptions of previous theorem hold, let thelimit attra
tor be exponential and let the almost-periodi
 fun
tion g(t) � bghave bounded primitive in L2(!), i.e.G(T ) := Z T0 (g(t)� bg) dt; kG(T )kL2(!) � C(g); 8T � 0 (16)Then the following estimate is valid:distL2(!)(A";A0) � Cg"� (17)where 0 < � < 1 and Cg 
an be 
al
ulated expli
itly.Note that the assumption (16) is evidently valid for any periodi
 fun
tiong but may be not valid for more general almost periodi
 ones. Some suÆ
ient
onditions on g to satisfy this assumption are given at the end of Se
tion 1.4



Note also that the estimates (17) for di�eren
es between the regularattra
tors for semigroups whi
h possesse global Lyapunov fun
tions anddepend regularly on a parameter " have been obtained in [2℄.These results have been re
ently extended in [5℄ to regular attra
torsof some autonomous rea
tion-di�usion equations with spatially os
illating
oeÆ
ients (x=") and their homogenizations.2 The estimates for solutions in a half-
ylinderIn this Se
tion we derive a number of estimates for the solutions of theauxiliary problema("2�2t u+�xu)� 
�tu� f(u) = g"(t); ujt=0 = u0 (18)in a half-
ylinder 
+ whi
h are useful to study the behaviour of the attra
-tors.We start with the uniform with respe
t to "! 0 analogue of the estimate(6) for this equation.Theorem 1.1 Let the above assumptions hold. Then for every " < "0small enough the problem (18) possesses a unique solution whi
h satis�esthe following estimate:ku;
T k�" � Q(ku0kV "0 )e��T +Q(kgkL2b ) (19)where by de�nitionku;
T k2�" := "4k�2t u;
T k20;2 + k�tu;
T k20;2 + ku;
T k22;2; (20)ku0k2V "0 := "ku0k2V0+ku0k20;2 and the monotoni
 fun
tion Q and the exponent� are independent of " < "0.The uniform estimates of the form (19) are more or less known for theparti
ular 
ases of equations (18) ([3℄, [15℄) but the rigorous proof of (19) israther te
hni
al so we omit it here (see [16℄ for details).Remark 1.1 Note that if we put formally g0(t) := bg, where bg has beende�ned by (12) then taking formally " = 0 in (20) we obtain well knownestimate for the solutions of the limit paraboli
 equation (13). Note also thatthe norm in V "0 is a uniform with respe
t to " norm in the tra
e spa
e att = 0 for �"(
0), so the estimate (19) implies parti
ularly that the solutionsu(t) are uniformly with respe
t to " bounded in V "0 .Our next task is to estimate the di�eren
e between the individual solu-tions of (18) and (13). These estimates are of fundamental signi�
an
e for5



estimating the di�eren
es between the 
orresponding attra
tors whi
h willbe derived in the next Se
tion.Theorem 2.2 Let the assumptions of previous Theorem hold. Assumein addition that the right-hand sides g satis�es (16)Let u"(t) and bu(t) be the solutions of the problems (18) and (13) respe
-tively su
h that u"(0) = bu(0) = u0. Thenku"(t)� bu(t)k0;2 � C1"1=2eK1t (21)where the 
onstants C1 and K1 are independent of " and uniform with respe
tto bounded in V "0 sets of u0.If the nonlinear term satis�es the additional regularity assumptionjf 0(u)j � C(1 + juj4=(n�2)) (22)and the primitive G(T ) is bounded not only in L2(!) but in W 1;20 (!), thenthe estimate (21) remains true with "1 instead of "1=2 in the right-hand side:ku"(t)� bu(t)k0;2 � C"eK1T (23)The sket
h of the proof. Denote v(t) = u"(t) � bu(t). Then this fun
tionevidently satis�es the equation
�tv = a�xv � (f(u")� f(bu))� h"(t); vjt=0 = 0 (24)where h"(t) := "2�2t u"(t) + (g"(t) � bg). Multiplying this equation by v(t)and integrating over (t; x) 2 [0; T ℄ � ! we obtain using the monotoni
ityassumption f 0 � �K and the positiveness of matri
es 
 and a that�(kv(T )k20;2+Z T0 kv(t)k21;2 dt) � K Z T0 kv(t)k20;2 dt+Z T0 (h"(t); v(t))dt (25)with the appropriate positive �. In order to apply the Gronewal inequalityto (25) we should estimate only the last integral in the right-hand side of it.To this end we de
ompose it in a sum of two integrals:I1(T ) := "2 Z T0 (�2t u"(t); v(t))dt; I2(T ) := Z T0 (g"(t)� bg; v(t))dtLet us introdu
e a fun
tion G"(T ) := R T0 (g"(t) � bg)dt. Then, evidentlyG"(T ) = "G(T="). Thus, (16) implies thatkG"(T )k0;2 � C" (26)6



and the assumptions of the se
ond part of the theorem imply kG(T )k1;2 �C".Integrating by parts in I1 and using the fa
ts that �tu" and �tv is uni-formly bounded with respe
t to " in L2b(
+) (a

ording to Theorem 1.1) wederive thatI1 = �"2 Z T0 (�tu"; �tv) dt+ "2(�tu"(T ); v(T )) � C�T"2 + �kv(T )k20;2 (27)where � > 0 
an be 
hosen arbitrary small. We have also used here the evi-dent fa
t that "k�tu"(T )k0;2 is uniformly bounded with respe
t to ". Indeed,a

ording to the standard interpolation inequality,"k�tu"(T )k0;2 � C �"2k�2t u"kL2([T;T+1℄;L2)�1=2 �k�tu"kL2([T;T+1℄;L2)�1=2 � C1Thus, it remains to estimate I2. Integrating by parts again we obtain thatI2 = �Z T0 (G"(t); �tv(t)) dt+ (G"(T ); v(T )) (28)The se
ond term 
an be easily estimated by Holder inequality and the as-sumption (26): (G"(T ); v(T )) � C�"2 + �kv(T )k20;2Estimating the �rst integral (we denote it by I12 ) in the right-hand side of(28) by Holder inequality and using (26) and the fa
t that �tv is uniformlybounded in L2b(
+) one 
an easlily derive the rough estimate I12 � C"Twhere in 
ontrast to the previous estimates we have only "1 but not "2.This leads (after the inserting all obtained inequality to the right-hand sideof (25) and applying the Gronewal inequality) to the rough estimate (21)with the rate of 
onverging "1=2 instead of "1.Our task now is to derive more sharp estimate for the integral I12 underthe assumptions of the se
ond part of Theorem 1.2. To this end we express�tv from the equation (24) and insert it to I12 :I12 = �Z T0 (G"(t); 
�1a�xv(t))dt+ Z T0 �G"(t); 
�1(f(u")� f(bu))� dt++ Z T0 (G"(t); 
�1G0"(t)) dt = J1 + J2 + J3 (29)In order to estimate J1 we integrate by part with respe
t to x and use theestimate krxG"(t)k0;2 � C" together with Holder inequality:J1 = Z T0 (rxG"(t); 
�1arxv(t))dt � C�"2T + �Z T0 kv(t)k21;2dt (30)7



Here we essentially use the fa
t that G" equals zero on the boundary �!.(Without this assumption we would obtain the additional boundary termsafter the integration by parts for whi
h we 
annot derive the good estimate).In order to estimate J2 we use the fa
t that, a

ording to Theorem 1.1the fun
tions u"(t) are uniformly with respe
t to " bounded in W 1;2(!),the growth assumption (22) and Sobolev embedding theorem. Indeed, sin
ef(u") � f(bu) = R 10 f 0(su" + (1 � s)bu) dsv then applying Holder inequalitywith the exponents p1 = p2 = 2n=(n� 2) and p3 = n=2 and the embeddingW 1;2 � Lp1 we will haveJ2 � C Z T0 (1 + ku"(t)k0;p1 + kbu(t)k0;p1)4=(n�2)kv(t)k0;p1kG"(t)k0;p1 dt �C1 Z T0 (1 + ku"(t)k1;2 + kbu(t)k1;2)4=(n�2)kv(t)k1;2kG"(t)k1;2 dt �� C2"2T + �Z T0 kv(t)k21;2dt (31)Note that the integral J3 
an be 
al
ulated expli
itly:J3 = 1=2 �G"(T ); 
�1G"(T )� � C"2 (32)Inserting the estimates (29){(32) in (28) we obtain thatI2(T ) � C"2(1 + T ) + �Z T0 kv(t)k21;2 dt+ �kv(T )k20;2 (33)Inserting the estimates (27) and (33) in (25), taking � small enough andapplying the Gronewal inequality we derive the estimate (23). Theorem 1.2is proved.Let us formulate now some suÆ
ient 
onditions for almost periodi
 right-hand sides g to satisfy the assumptions of Theorem 1.2. To this end we re
all(see e.g. [9℄ for details) that every almost periodi
 in Cb(R; L2(!)) fun
tiong possesses a Fourier expansiong(t) = 1Xk=�1 g�k(x)ei�kt (34)where f�kg � R is 
ountable set of Fourier modes for f and the 
orrespond-ing amplitudes g�k 2 L2(!) and satisfy the estimate1Xk=�1 kg�kk20;2 <1 (35)8



Moreover, bg(x) = g0 (Here we de�ne g� � 0 if � =2 f�kg).Proposition 1.1. Let the Fourier amplitudes g�k of the almost periodi
fun
tion g satisfy the assumptionX�k 6=0 1j�kj kg�kk0;2 <1 (36)Then the fun
tion G(T ) satis�es the inequality (16). Analogously ifX�k 6=0 1j�kj kg�kk1;2 <1 (37)then kG(T )k1;2 � C.Proof. Let us verify (16) using the Fourier expansion (34). Indeed,subtra
ting bg = g0 in (34) and integrating over t we derive thatG(t) = X�k 6=0 g�k(x)1=(i�k) �ei�kt � 1� (38)Taking the L2-norm from the both sides of (38) and using (36) we obtain(16). The se
ond part of the proposition 
an be veri�ed analogously. Propo-sition 1.1 is proved.Corollary 1.1. Let the assumptions of Theorem 1.1 hold and let thefun
tion g satis�es (36). Then the estimate (21) hold for the di�eren
e ofthe non-averaged u"(t) and 'averaged' bu(t) solutions of (18). If in additionG(t) belongs to W 1;20 (!) and the assumptions (22) and (37) hold then theimproved estimate (23) is valid.Remark 1.2. Note that we have used the non-natural assumption thatG(t)j�! = 0 (whi
h means that the os
illations de
ay near the boundary) inorder to obtain the estimate (23) (with "1 instead "1=2). This suppositiono

ured to be nonessential under the assumptions of Corollary 1.1 and 
anbe removed (see [16℄) so we use it only in order to simplify the proofs.We 
on
lude this Se
tion by 
onsidering the 
ase of so 
alled quasiperi-odi
 right-hand sides.Example 1.1. Quasiperiodi
 fun
tions. In this 
ase (by de�nition)there exists a �nite ve
tor of frequen
ies � = (�1; � � � ; �m) 2 Rm , m > 1su
h that �k = (�; l(k)) :=Pmi=1 �i � l(k)i for the appropriate l(k) 2 Zm and�i are rationally independent. Then (34) readsg(t) = Xl2Zm glei(�;l)t (39)9



Moreover, it is known that for every su
h g 2 Cb(R; L2(!)) there exist a 2�-periodi
 with respe
t to every zi, i = 1; � � � ;m fun
tion � 2 Cb(Rm ; L2(!))su
h that g(t) = �(�1z1; � � � ; �mzm); �(z; x) = Xl2Zm gl(x)ei(z;l) (40)(In a fa
t (40) gives another equivalent de�nition of a quasiperiodi
 fun
-tion).In order to verify the 
ondition (36) whi
h reads in our 
ase as I :=Pl2Zm;l 6=0 kglk0;2=j(�; l)j <1 we re
all that due to the theory of Diophan-tine approximations for every Æ > 0 and for almost every � 2 Rm (withrespe
t to Lebesgue measure) the following estimate is valid:j(�; l)j � C�jlj�m�Æ; l 6= 0 (41)Assume that � is 
hosen in su
h a way that (41) hold. Then the sum I 
anbe estimated byI � C Xl2Zm jljm+Ækglk0;2 � C(Xl 6=0 jlj2(m+Æ��))1=2(Xl 6=0 jlj2�kglk20;2)1=2 (42)Note that the �rst integral in (42) is �nite if 2(m + Æ � �) < �m, i.e.� > 3m=2+ Æ and the se
ond one is �nite for every g su
h that the fun
tion� from the representation (40) belonging to C�b (Rm ; L2(!)).Thus, for every � satisfying (41) and every periodi
 � 2 C�b (Rm ; L2(!))with � > Æ + 3m=2 the fun
tion (40) satis�es the assumption (36).3 The attra
tors.In this Se
tion we give a sket
h of the proof of Theorems 0.1 and 0.2 whi
his based on the estimates obtained in the previous Se
tion.We start with the proof of Theorem 0.1. Indeed, it follows form theestimate (19) of Theorem 1.1 that the attra
tors A" are uniformly boundedin in the norms of V "0 and parti
ularly in the norm of W 1;20 (!):kA"k1;2 � C; " < "0 (43)So in order to prove the upper semi-
ontinuity (14) it is suÆ
ient to verifythat if u"n 2 A"n and u"n ! u0 when "n ! 0 weakly in W 1;20 then u0 2 A0.Then we will have the upper semi
ontinuity in a weak toplogy of W 1;2(!)10



and 
onsequently (due to the 
ompa
tness of the embeddingW 1�Æ;2 �W 1;2){ the upper semi
ontinuity in the spa
es W 1�Æ;2(!).A

ording to the attra
tor's stru
ture theorem (see (10)), there exists asequen
e �n 2 H(g) and a 
omplete bounded solutions u"n(t) t 2 R of theequations a("2n�2t u"n +�xu"n)� 
�tu"n � f(u"n) = �n(t="n) (44)su
h that u"n = u"n(0). Our task now is to pass to the limit n!1 in (44).To this end we re
all, that a

ording to Theorem 1.1, u"n(t) are uniformlybounded in �"(
T ) for every T 2 R. Thus, passing to a subsequen
e ifne
essary, we may assume that for every T 2 R,�tu"n(t)+ �tbu(t) in L2(
T ); and u"n(t) + bu(t) in W 2;2(
T ) (45)and the limit fun
tion bu is bounded with respe
t to t, i.e �tbu;�xbu 2 L2b(
)and bu(0) = u0. So, it remains to prove that the fun
tion bu(t) satis�es thelimit equation (13). Then (10) will imply that u0 2 A0.Note that the 
onvergen
e (45) together with a growth restri
tions (3)admits to pass to the limit in the left-hand side of (44) in a standard way(see e.g. [2℄). The passing to the limit in the right hand side of this equationis based on the following lemma.Lemma 2.1 Let g 2 Cb(R; L2(!)) be almost periodi
 with a hull H(g).Let also �n 2 H(g) and "n ! 0 when n!1. Then for every T 2 R�n(t="n)+ bg (46)weakly in L2(
T ).Indeed, sin
e the almost periodi
 
ow is stri
tly ergodi
 then it followsfrom the Birkgho�{Hin
hin ergodi
 theorem (see e.g. [7℄) that the L2-limitbg = limT!1 12T Z T�T �(t)dt (47)is uniform with respe
t to � 2 H(g). The assertion of the lemma is a simple
orollary of this fa
t (see [16℄ for details). Lemma 2.1 is proved. Theorem0.1 is proved.Proof of Theorem 0.2. In a fa
t the result of this Theorem is a simple
orollary of Theorem 1.2. Indeed, assume that (16) is valid for the initialright-hand side g. Then it is not diÆ
ult to verify that it is valid uniformlywith respe
t to � 2 H(g) and 
onsequently the estimate (21) is also validuniformly with respe
t to � 2 H(g). Namely, let u";�(t) be a solution of11



the equation (18) with the right hand side �(t="), � 2 H(g) and let bu(t) bethe 
orresponding solution (u";�(0) = bu(0) = u0) of the limit problem (13).Then ku";�(t)� bu(t)k0;2 � C"1=2eK1t (48)uniformly with respe
t � 2 H(g) and bounded in V "0 sets of initial data u0.Assume now that � 2 A". A

ording to the attra
tor's stru
ture theoremthere exists a 
omplete bounded traje
tory u"(t), t 2 R of the equation (18)with the right-hand side � 2 H(g). Let us �x an arbitrary T > 0 and
onsider the traje
tory bu(t) of the limit equation su
h that bu(0) = u"(�T ).Then (sin
e A" are uniformly bounded in V "0 ) (48) implies thatk�� bu(T )k0;2 � C"1=2eK1T (49)From the other side sin
e A0 is exponential thendistL2(!)(bu(T );A0) � C1e��T (50)Combining (49) and (50) we dedu
e thatdistL2(!)(�;A0) � C1e��T + C"1=2eK1T (51)Taking the optimal value for T (solving the equation C1e��T = C"1=2eK1T )in the estimate (51) we will havedistL2(!)(�;A0) � C2"�; � = �2(K1 + �) (52)Sin
e � 2 A" is arbitrary then (52) proves Theorem 0.2.Remark 2.1. The assumption (16) 
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