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Abstract. The goal of this paper is to obtain time-asymptotic regularity in Gevrey
spaces of the solution of a damped wave equation. The difficulty is due to the fact
that this equation is only partially dissipative.

1. Introduction. We consider the following singularly perturbed damped wave
equation in a cube domain Q = [0, 27]?

ed}us + O + Auf + f(uf) = g,
U|Et:0 = ug, atulizo =uq,

(1)

where the operator A = I — A with periodic boundary conditions.
We assume that ¢ > 0 and v > 0. The nonlinear function f is required to be real
analytic,

o0 o0
flu) = Zajuj, where h(s) = Z laj|s’ < +oo Vs € R. (2)
j=0 j=0
We assume furthermore that the nonlinearity f satisfies
fl(u) Z _Ka
F(u)u> 0 Ju] > L 3)

[f"(w)] < C(A+ |u]),

where C, K, and L are fixed positive constants. The assumptions (2) and (3) are
fulfilled for cubic nonlinearity f(u) = u® — au, a € R.

Remark 1. We can replace the assumption (3) by an other one, if we are able to
obtain uniform (with respect to €) absorbing sets in L (). For example f(u) =
sin u.

We assume that
g is periodic and analytic. (4)
In [1] [2], we obtained, for this problem, the existence of exponential attractors
with a rate of attraction, a diameter and a fractal dimension uniform with ¢, in the
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variable u as well as u;. For such a result, the appropriated spaces for solutions of
(1) are ¥ (e) = HEF(Q) x HE, () equipped with the following norms

1 (), 05 ()70 oy = ellug B, + Huf (B Fpamr + lu (O xar

the spaces Hll,“er (Q) denote the classical Sobolev spaces on Q with periodic boundary
conditions.

We are able to prove the existence of smooth exponential attractors in £¥(g) for k
large, attracting all sets of £%(g) even if the equation is not fully dissipative, thanks
to a transitivity property [2]. Here we show a stronger result of regularity with
Gevrey classes of the assymptotic trajectories. We state without detailed proof
the existence of exponential attractors with Gevrey regularity attracting all sets of
E%e).

Gevrey regularity for solution of dissipative partial dissipation equation is obtained
for example for Navier-Stokes equations in [4]. More recently, Gevrey regularity
for asymptotic trajectories of partially dissipative problems is obtained in [5] for a
Bénard Convection model.

1
2. Main result. We introduce the Gevrey classes G2 () = D(A%e’4?). The
norm on G2(Q) is

o 1
ul|Zp oy = wi2(1 + 52 ﬁe%(le)Za
Gr(Q) J
jezs
where the u; are the Fourier coefficients of u.

Let us introduce the Gevrey classes F¥(¢) = G¥+1(Q) x GE(Q) for our problem,
equipped with the norm

11 (8), ug () e ) = ellug (O11Gs + [uf @G- + lu )]0
We denote by S¢(t) the semigroup associated to (1),
S (1) (10, 1) = (u (), 5 (1)).
The aim of this paper is to establish

Theorem 1. Let k > 2, under assumptions (2), (3), (4), for all (ug,u1) in B C
E%(g), there exist Emax and omax such that for € < emax and o < Omax, , there eist

(v,v;) uniformly bounded with respect to e in L= (R, F¥(g)) such that
[1(u® (#), ui (1)) = (v(8), ve(£))l|eo(e) < C exp(—pt), VE >0,

with p > 0 and C' independent of ¢.

Remark 2. Because of the lack of time regularizing effect in the wave equation,

we can’t obtain an estimate in FF(g)) for (u®(t),u;(t)) as it is made for dissipative
equations. But we obtain a time-asymptotic regularizing effect.

Corollary 1. Under the same assumptions, the points of the attractor of (1) are a
uniformly bounded for the FF(¢)-norm.

Theorem 2. Under the same assumption than theorem 1, there exist exponential
attractors M C FE(e) on £%). The radius of M is uniformly bounded on
FE(e) with respect to € < emax. The rate of attraction is also uniform, the fractal
dimension has a uniform bound.
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We don’t prove this theorem in this article. The first step of the proof is to show
that trajectories stemmed from a bounded set of F¥ () are still bounded for all time
in F¥(e). the second step is to use a transitivity argument as in [2] or as in the end
of the proof of the Theorem 1.

3. Proof of the Theorem 1. The proof of this theorem uses techniques developed
in [5] and [4] and uses results of [2].

Lemma 1. [4] Let u and v be in GE(Q), if k > 2 then uv belongs to G%(Q) and
there exists Cy, such that,

[luv]lgr @) < Crllullar @) llvllar @) -
Let f be a function verifying assumption (2) with a magjorizing function h, then,
1 W)llar @) < (1 + CpYR(Crllullgr o))- (5)

Let A be an eigenvalue of A, let Py be the projector on the low frequencies (the
subspace generated by the eigenfunctions whose eigenvalues are smaller than ).
We construct (v,v;) in the following way

(v,v¢) = P\(u®,uz) + (0,0),
where (9, 0¢) is solution of

€0y + oty — DD+ Qxf(Pau+ 0) = Qag,
Uj¢=0 = 0, Vgj¢—0 = 0, (6)
with Q) =1 — P.

In order to prove this theorem 1, we first assume that (ug,u;) belongs to £¥(e).
Lemma 2. The solution (v,v;) of (6) belongs to L®°(Rt, Fk(¢))

Proof of Lemma. In order to obtain an estimate in L>(R", F¥(¢)), we compute the
G* (¢) inner product of (6) with ¢, &, and A~ 19;;. We combine these three equations
and denote B = A%, we obtain,

L (5|B*e" B3 + 5|B¥+1e7 P03 + ae(B*e Piy, B*e o) + & |BFe P|3)
+4 (§|Bk’1e"Bﬁt|§ + B(Bke"Bv,Bke"th))
+4 (BBM1 7P QA(F(Pyue + ), BY1ePiy) — B(BM1e7Bg, BH1eoB,))
+(y — ag = B)|B*e7 P[5 + a| B¥ e Pofs + fe| BF e P o3 < (7)
B(B*e Bo, B¥eoBoy) + B(B¥ e BQy f'(Pyuf + 9)0; (Pyu® + 0), B¥"1e7Biy)
—a(B*e"BQy f(Pyuf + 1), B¥e"Bd) + a(B*e”Bg, B¥e7Bp)
+(B*e?Bg, BkeoBo,) — (BkeBQy f(Pyuf + 0), B*e?Biy).

The constant « and 8 will be chosen properly and independent of e. A first step is
to take 8 = 0, we then obtain the estimate,

&0+ (v = ao)|[oel2e + allo]l2ee1 < allQxF(Paw® +0)llgxl0]] e
ar + QA f(Pyu® + ) ar (8)

+gllaxlloellgx

ak

|0

+allgllar ar ||
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with

a
2
According to Cauchy-Schwartz inequality, and arguing that A is the smallest eigen-
value on Q5 L?(2), we obtain,

|9

€ . 1. I
I'= §||Ut é’; +§||”||?;’;“+ é;;+a5(vt,v)g;;.

d . . a® 1 N
G+ G = anllinliy +alloles < (5 + DA + 0l + ol ©
We choose emax < 7%, then,
€. 1., a, . 3¢, . 1. 3a,, .
1o o+ Sllo Zasr 7110 ar ST < - 0 o + Sllo frr + - o G- (10)
Choosing a < 4\, we have
d a2 ]- £ AN\ 2 2
— I+ al < (5 + ) (If(Pau” +0)|[Ge + llgllge)- (11)
dt Ay - -
According to assumption (2) and applying (5), we have,
d o 1 —1y72 e 2
sl tal <(5+ ;)((1 + O )W (Crl|Pau® + 0llge) + [lgllge)- (12)

Lemma 3. Assume that 0 < omax < 5, then,
1P 12 < e uf| e < el (3 < C
where ¢ is a fized constant independent of \.

Proof of Lemma. The first inequality of the lemma is obvious, the second follows
from the existence of absorbing sets [2] in £ assuming the same regularity on the
initial data. o

We can now conclude to the bound of I instead of the a priori high growth of h
by virtue of the smallness of initial data. As a matter of fact, I'(t = 0) = 0, then,
while I' < m, we have,

o
AT+ al < (5 + D) ((1+ CEHR(CR(VT +2/T)) + [|gl[2)

We deduce that, during the time such that I' < m

P (s Do 22 gl

Choosing o and A (A > ¢) large enough so that the right handside is smaller than
m, we have shown that I remains smaller than m for all time under the condition

2 4m
G’;Sa

" (% " a%)((l + O (CRVO) + gllg)-

For example we take

a=\> max(%, 40—”;), with m = 2((1 4+ O, ")h2(20,VC) + ||g

(From the inequality (10), we then have obtained a bound for ||| |20,; +2||9] |2G,;+1 +

&)

|[0]|%, assuming that (i, @) belongs to £F. We go back to (7) with the same
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value a(= A), €max as below but with 8 # 0. The goal is now to obtain a bound on
¥ in G¥~! independently of e.

4 (F + 8Bk 1By |3 + B(Bre Py, Bke"th))
i (B(B*eTBQu(f (Pyu® + ), BEe7Bdy) — B(BH1e7P g, BH1e7P)
+3%|B*e B3 + al' <
B(B*e B0, B*eBi,) + B(B* Le?BQyf (Pau® + 9)0;(Pyuf + ), B¥ e Bi;) + am.
We denote by I'y the quantity,
Ly = B(Be7Pv, BrePuy) + A(B*Le™P Qx(f(Pyu” + ), B*1e7Piy)
—B(B*1e7Bg, B¥1¢7B4,).
Then,
4 (F +8|BF e By, 3 + Fl) + Z|B*e By + (I +T4) <
B(B*e o, Bk Biy) + B(B* e BQyf (Pyu® + 0)0,(Pyuf + 0), B¥te?Biy)
+a(ly +m).

We can bound T’y in the following way,

~ _ _ m
al'y < Z2llinl 2 + 327877 m + 168y (W(VC + (/) + llgllas)-
Furthermore,
B(B*e?Bo, Bke?Boy) + B(B* e BQyf (Pyu® + 0)0;(P\u® + ), B¥"1e?By,) <
Flld] [ + 64827 A Im + 647 AT EVON (VO + /B
+2048y AR (VT + /).

Choosing 8 = we obtain,

2
327
4 (F + §|Bk_1e"B13t|§) +A (F + §|B’f—1e”Bﬁt|§) <
6452y A m 4 64y A EVOR (VT + /I) + 2048y 2N 2 (VO + /)
+3208ytm +166%yH(WM(VC + /F) + llgllax ).
We then have,
L(t) + 551 B* e Por(t)[3 + Tu(t) <
I 2m 4 64y AN EVOR (VT + /I + 20487 2A P2 (VT + /)
+3m + 557 (R(VC + /) + |lgllgr)?, VE > 0.

As we already bound Ty, the desired estimate of (,?;) in L™ (R*, F¥(¢g)) is ob-
tained. O

For A large enough, we now prove the second part of the theorem 1 (but for smooth
intial data), that is, (w,w;) = (u® — v,uf — v;) goes to zero in £°(¢)-norm. The
proof is based on energy estimate with £°(¢)-norm of (w,w;) solution of

ewy + aw; — Aw + QA (F (u®, 0)w) =0,

Wi—p = QAUo, Vgjp—0 = QU1
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with
1
F(uf,9) = / F1(uF + 0(Py® + 8))d8.
0
We assume again here that (ug,u;) belongs to £¥(e), (k > 2), so that we have

2
uniform bound with time of (u®,u$) in £¥(¢).
We compute the £°(g) inner product this equation with (w,w;), we obtain,

4T 4 (7 — ae)|w3 + alBul} <
|F'(u, 9)| o w]3 + | F(u®, 0)]oo w2 [we]2
+BI0:F (u®, 0)| oo [wl2 | A we ]2 + B F (U7, 0)|oo [w]2| A7 w2,
with
T = e|wy|3 + |Bw|3 + a|w|3 + B|B w2 + B(QAF (uf, 9)w, A~ wy) + as(w,w;).
Then,

d 2
ZT+ (% — ae)|wil2 + a|Bwl2 < A" Buwl? + %02)\_1|Bw|3 + 202273 | Buwl2,

where C depends on bound of F and 0;F. Choosing, « = 1, 8 = min(1, %) and A
large enough so that,

A> 20 +20% (v 1+ 072)

and emax < min(}, 3), we have
1 —
25 (elwel3 + [Bwl3 + alwl3 + BB wl3)

3 _
<y (elwel3 + [Bwl3 + alwl3 + BB wl3)

and, for A > 3,
o1
L't <T - —, =)t).
(t) < T(0) exp(—min( 5, 5)0)
Let us conclude to the proof of theorem 1 with the

Lemma 4. Let € < emax, let k > 2, let us assume that (uo,u1) belongs to £°(¢).
There exists (ii(t), 1 (t)) uniformly bounded with t and e in E¥(g) such that there
exist nonnegative reals my and uy, independent of € such that

I[(@(t0), it (to)) — S (to)(uo, u1)||go(z) < my exp(—pato)- (13)

Assume also 0 < Omax, for all (G, @) in B C EF(), there exist (v,v;) uniformly
bounded with respect to ¢ in L>®(RT, F¥()) such that there exist nonnegative reals
mo and s, independent of € such that

|[S° (1) (o, @1) — (v(t1), ve(tr))|lgo(e) < moexp(—patr), YVt >0,  (14)
There exist nonnegative reals ms and us3, independent of € such that
I[S=(t1 + to) (w0, u1) — S (t1)(@(to), e (to)) [0 (e)

o (15)
< mgexp(usty)||S®(to) (uo, u1) — (@(to), @t (to))||co(e), Vto,t1 > 0.
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Proof of Lemma. The estimate (13) can be found in [2], it is based on the following
splitting of S¢(¢), u® = d° + r®,
eds, +ydi + Ad® + fi1(df) =0
Ay = 1%, djjy_g =0,
eryy +ri + AT + fi(d +7) — fi(d) + fo(u) =g
dfy_y = 0, djjy_o = 0,
with periodic boundary condition and f = fi + fa, f{ > 0, |fo| + |f5] + |f5] is
bounded.

The estimate (14) is what is shown above.
The estimate (15) is a classical estimate of the difference of two solutions. O

Then, choosing t1 = 5 £4-~to, (13) and (15) lead to

I[S=(t1 + to) (uo,u1) — S*(t1)(@(to), e (to)) [0 (e)
< mimgexp(—5-(t1 + to)), Vto,t1 = M;‘—_}_mto > 0.
At last, thanks to (14),
1S (t1 + to) (w0, w1) — (v(t1),ve(t1))|]eo(e)
< mimgexp(—5-(t1 + to)) + moexp(—pat1), Vio,t1 = M;‘—_}_mto > 0.
This shows the theorem 1.
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