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eAbstra
t. The paper is devoted to study of the longtime behavior of solutionsof a damped semilinear wave equation in a bounded smooth domain of R3 withthe nonautonomous external for
es and with the 
riti
al 
ubi
 growth rate of thenonlinearity. In 
ontrast to the previous papers, we prove the dissipativity of thisequation in higher energy spa
es E�, 0 < � � 1, without the usage of the dissipationintegral (whi
h is in�nite in our 
ase).Introdu
tion.We study the following damped wave equation in a smooth bounded domain 
of R3 :(0.1) ( �2t u+ 
�tu��xu+ f(u) = g(t); u���
 = 0; t � �;u��t=� = u� ; �tu��t=� = u0� :Here u = u(t; x) is an unknown fun
tion, �x is the Lapla
ian with respe
t tothe variable x = (x1; x2; x3), 
 > 0 is a given dissipation parameter, � 2 R andf = f(u) and g = g(t; x) are given nonlinear intera
tion fun
tion and externalfor
es respe
tively.We also assume that the nonlinear intera
tion fun
tion f 2 C2(R) has a 
riti
al
ubi
 growth rate, i.e.(0.2) jf 00(u)j � C(1 + juj); u 2 R; f(0) = 0and satisfy the standard dissipativity assumption(0.3) lim infjuj!1 f(u)u > ��1;1991 Mathemati
s Subje
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riti
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where �1 is the �rst eigenvalue of the Lapla
ian in 
 (with the Diri
hlet boundary
onditions) and the external for
es g(t) satisfy(0.4) g; �tg 2 L1(R; L2 (
)):It is well-known that, under the above assumptions, equation (0.1) is uniquelysolvable in the energy phase spa
e E := H10 (
) � L2(
), for every � 2 R and�� := (u� ; u0� ) 2 E, and, thus, generates a dynami
al pro
ess in E via(0.5) U(t; �)�� := �u(t); � 2 R; t � �;where �u(t) := (u(t); �tu(t)) is a unique solution of (0.1) with the initial data �� 2 E,see [1-2℄, [4℄, [9℄ and the referen
es therein.It is also well-known that, in the sub
riti
al 
ase(0.6) jf 00(u)j � C(1 + juj�); � < 1;problem (0.1) generates a dissipative dynami
al pro
ess not only in the energyphase spa
e E, but also in more regular phase spa
es E�, 0 � � � 1, where(0.7) E� := H�+1 �H�and Hs := D((��x)s=2), s 2 R, is a s
ale of Hilbert spa
es generated by theLapla
ian (equipped by the Diri
hlet boundary 
onditions). Moreover, dynami
alpro
ess (0.5) asso
iated with equation (0.1) in E possesses a uniformly attra
tingset bounded in E1, see [4℄ for details. In parti
ular, this implies (see [2℄ and [4℄)the existen
e of a global (uniform) attra
tor A for dynami
al pro
ess (0.5) and itsboundedness in more regular spa
e E1 = (H2(
) \H10 (
))�H10 (
).In 
ontrast to that, in the 
ase of the 
riti
al 
ubi
 growth rate, the analoguesof the above results were obtained in the autonomous 
ase (g(t) � g0 2 L2(
))only (see [2℄ and [8℄) and their proof essentially used the �niteness of the so-
alleddissipation integral(0.8) Z 1� k�tu(s)k2L2 ds <1whi
h is usually in�nite in the nonautonomous 
ase (see also [12℄ where equationsof the view (0.1) whose dissipation integral is in�nite, but the rate of its divergen
eis, in a sense, small were 
onsidered).In the present paper, we generalize the method of [2℄ using instead of the dis-sipation integral the spe
ial approximations of the solution u(t) by the pie
ewise
ontinuous regular fun
tions (see Proposition 1.4) and, thus, we extend the resultsmentioned above to the nonautonomous 
ase. To be more pre
ise, the main resultof the paper is the following theorem.Theorem 0.1. Let assumptions (0.2){(0.4) hold. Then,1) For every � 2 [0; 1℄, equation (0.1) generates a dissipative dynami
al pro
essU(t; �) in the phase spa
e E�, i.e., for every solution u(t) of this equation satisfyingthe assumption �u(�) 2 E�, the following estimate hold:(0.9) k�u(t)kE� � Q(k�u(�)kE�)e��(t��) + C;2



where the positive 
onstants � and C and the monotonely in
reasing fun
tion Qdepend on �, but are independent of t, � and �u(�).2) The R-ball BR of the spa
e E1 
entered at 0 is a uniform exponentially at-tra
ting set for dynami
al pro
ess (0.5) in the phase spa
e E if R is large enough,i.e. there exist a positive 
onstant � and a monotone in
reasing fun
tion Q su
hthat, for every � 2 R and t � 0 and every bounded set B in E, we have(0.10) distE (U(t+ �; �)B; BR ) � Q(kBkE)e��t;where distV (X;Y ) denotes the non-symmetri
 Hausdor� distan
e between the sub-sets X and Y of the spa
e V .In parti
ular, Theorem 0.1 implies that the global/uniform attra
tor A of prob-lem (0.1) is bounded in E1. Moreover, estimate (0.10) 
an be applied in order to
onstru
t the exponential attra
tor M for this problem whi
h will be bounded inE1 (see e.g., [5℄).We emphasize on
e more that, in 
ontrast to the previous papers, our methoduses neither the Lyapunov fun
tion nor the dissipation integral and, thus, 
an beextended to the 
lass of nongradient damped hyperboli
 systems, more general
lasses of the nonlinearities (e.g., depending expli
itly on t) and even to the 
lass ofdamped hyperboli
 equations in unbounded domains (where the dissipation integralis also usually in�nite, see e.g. [7℄ and [11℄). We return to these problems somewhereelse.The paper is organized as follows. The proof of Theorem 0.1 is given in Se
tion1 and some auxiliary results whi
h are ne
essary for that proof are 
onsidered inAppendix.A
knowledgments. This resear
h is partially supported by INTAS grant no. 00-899 and CRDF grant no. 2343.x1 Proof of Theorem 0.1.We divide the proof of this theorem on several steps.Step 1. Dissipativity in E. At this step, extending the arguments of [1℄ and [6℄to the nonautonomous 
ase, we verify that equation (0.1) generates a dissipativepro
ess in the energy phase spa
e E.Proposition 1.1. Let the assumptions of Theorem 0.1 hold. Then, for every � 2 Rand �� 2 E, problem (0.1) possesses a unique solution �u 2 C([�;+1); E) and(1.1) k�u(t)kE � Q(k��kE); t � �;where the monotoni
 fun
tion Q is independent of t and � . Moreover, the dynami
alpro
ess U(t; �) : E ! E asso
iated with this equation possesses a uniform boundedabsorbing set B � E, i.e., for every bounded set B � E there exists a time T = T (B)su
h that(1.2) U(t+ �; �)B � B ; 8t � T; � 2 R:Proof. The existen
e and uniqueness of the energy solution �u(t) of equation (0.1)is well-known, so we omit its proof here and only give the formal derivation of3



assertions (1.1) and (1.2) whi
h 
an be justi�ed in a standard way using the Galerkinapproximations, see [2℄ and [9℄ for the details. To this end, we multiply equation(0.1) by 2(�tu+�u), where � > 0 is a suÆ
iently small positive number whi
h willbe spe
i�ed below, and integrate over 
. Then, we have(1.3) ddtE(�u(t)) + 2(
 � �)k�tu(t)k2L2 + 2�krxu(t)k2L2 + 2�(f(u(t)); u(t)) == 2(g(t); �tu(t) + �u(t));where (u; v) denotes the standard inner produ
t in L2(
),(1.4) E((u; v)) := kvk2L2 + krxuk2L2 + �
kuk2L2 + 2�(u; v) + 2(F (u); 1)and F (u) := R u0 f(v) dv. Moreover, the dissipativity assumption (0.3) implies that,for every " > 0,(1.5) 1: f(u) � u � �(�1 � ")juj2 � C"; 2: F (u) � �12(�1 � ")juj2 � C"with the appropriate 
onstant C". Using the se
ond estimate of (1.5) and theinequality krxuk2L2 � �1kuk2L2 , we dedu
e that, for suÆ
iently small � > 0(1.6) E(�u(t)) � �1k�u(t)k2E � C1;for some positive 
onstants �1 and C1. On the other hand, due to the growthrestri
tion (0.2) and the embedding H1 � L6, we have(1.7) E(�u(t)) � C(k�u(t)kE + 1)4;for some positive 
onstant C. Moreover, applying the �rst inequality of (1.5) toequation (1.3) and using the Cau
hy-S
hwartz inequality, we �nally have(1.8) ddtE(�u(t)) + Æk�u(t)k2E � k := C2(1 + kgk2L1(R;L2));for some positive 
onstants Æ and C2. In order to dedu
e the desired estimates ofk�u(t)kE from the di�erential inequality (1.8), we need the following lemma.Lemma 1.1. Let E : E ! R be a 
ontinuous semibounded from below fun
tional ona Bana
h spa
e E. Then, for every M > 0, " > 0 and every fun
tion �u 2 C(R+ ; E)whi
h satis�es (in the sense of distributions) the di�erential inequality (1.8) and theadditional assumption E(�u(0)) �M;there exists time T = T (";M) whi
h depends on M and ", but is independent of a
on
rete 
hoi
e of the fun
tion �u(t), su
h that(1.9) E(�u(t)) � sup�E(�) : � 2 E; Æk�k2E � k + "	; 8t � T:The proof of this lemma 
an be found, e.g. in [3, Lemma 2.7℄.4



We are now ready to �nish the proof of Proposition 1.1. Indeed, applying Lemma1.1 (with the initial time t = � instead of t = 0) to the di�erential inequality (1.8)and using estimates (1.6) and (1.7), we obtain that the set(1.10) B := �� 2 E : E(�) � sup�E(�) : � 2 E; Æk�k2E � 2k	�is a bounded uniformly absorbing set for the pro
ess U(t; �) asso
iated with problem(0.1). Thus, (1.2) is veri�ed. Let us verify (1.1). To this end, we note that it issuÆ
ient to verify this estimate on the �nite interval [�; �+T ℄, where T = T (k��kE)is the same as in (1.2) (sin
e �u(t) 2 B for t � � +T and B is bounded). Integratingnow inequality (1.8) over [�; � + t℄, t � T , we have(1.11) E(�u(t+ �)) � E(�u(�)) + kt:This estimate (together with (1.6) and (1.7)) gives the desired estimate for �u(t+�),t � T and �nishes the proof of Proposition 1.1.Corollary 1.1. Let the above assumptions hold and let u1(t) and u2(t) be twosolutions of problem (0.1). Then, the following estimate holds:(1.12) k�u1(t)� �u2 (t)kE � CeK(t��)k�u1(�) � �u2(�)kE ; t � �;where the 
onstants C and K depend on k�ui(�)kE , i = 1; 2, but are independentof t, � and the 
on
rete 
hoi
e of the solutions u1 and u2.The proof of this estimate is standard and we omit it here, see e.g. [2℄ and [9℄.Assertions (1.1) and (1.2) 
an be reformulated in a more standard form of asingle estimate.Corollary 1.2. Let the above assumptions hold. Then, the following estimate holdfor every solution u(t) of problem (0.1):(1.13) k�u(t)kE � �Q(k�u(�)kE)e��(t��) + C;where the positive 
onstants C and � and the monotonely in
reasing fun
tion �Q areindependent of t, � and �u(�).Indeed, estimate (1.13) is an obvious 
orollary of (1.1) and (1.2), thus we omitits proof here and only re
all that the 
onstant � > 0 in (1.13) 
an be 
hosenarbitrarily, C 
an be spe
i�ed as the radius of the absorbing ball for the pro
essU(t; �) and the fun
tion �Q 
an be then 
omputed in terms of �, the fun
tion Qde�ned in (1.1) and the fun
tion T de�ned in (1.2).Thus, estimate (0.9) is veri�ed for � = 0 and the �rst step of the proof ofTheorem 0.1 is �nished.Remark 1.1. Dissipativity assumption (0.3) 
an be repla
ed by slightly morestrong (but, in a sense, more natural) one:(1.14) lim infjuj!1 f 0(u) > ��1:5



Indeed, on the one hand, this assumption obviously implies (0.3), but, on the otherhand, it is not diÆ
ult to dedu
e from (1.14) that: for every " > 0, there exists a
onstant C" su
h thatF (u) � f(u) � u+ 12(�1 � ")juj2 + C"; 8u 2 R:Estimating the term (f(u); u) in (1.3) by this inequality, we dedu
e more simpleanalogue of the di�erential inequality (1.8):(1.15) ddtE(�u(t)) + ÆE(�u(t)) � kand �nish the proof of Proposition 1.1 in a standard way (see [2℄ and [9℄) applyingthe Gronwall's inequality to this relation (without using Lemma 1.1).It is also worth to emphasize that the fun
tion f whi
h satis�es (1.14) and (0.2)automati
ally satis�es the assumptions of Babin and Vishik, see [2, Se
tions I.8and II.6℄.Step 2. Dissipativity in E� with 0 < � < 1=2. At this step, we proveestimate (0.9) for 0 < � < 1=2 and 
onstru
t an exponentially attra
ting set whi
his bounded in E�. To this end, following [2℄, we split the solution u(t) of equation(0.1) as follows: u(t) = v(t) + w(t), where v(t) solves the following autonomousproblem:(1.16) �2t v + 
�tv ��xv + f(v) + Lv = 0; �v��t=� = �u��t=� ; t � �;where L is a suÆ
iently large positive number and the remainder w(t) satis�es:(1.17) �2tw + 
�tw ��xw + [f(v + w)� f(v)℄ = g(t) + Lv(t); �w��t=� = 0:We �rst study equation (1.16).Proposition 1.2. Let the above assumptions hold. Then, there exists a positive
onstant L su
h that the solution �v(t) of (1.16) satis�es(1.18) k�v(t)kE � Q(k�u(�)kE)e��(t��);where the positive 
onstant � and monotonely in
reasing fun
tion Q are independentof t, � and �u(�).Proof. We �rst note that it is suÆ
ient to prove estimate (1.18) for � = 0 only (sin
eequation (1.16) is autonomous). We also note that the dissipativity assumption(0.3) and the fa
t that f(0) = 0 imply that(1.19) 1: f(u) � u � �Kjuj2; 2: F (u) � �K2 juj2;for some positive K. Then, multiplying equation (1.16) by �tv + �v, integratingover 
 and arguing as in derivation of (1.8) but using (1.19) instead of (1.5), weobtain that, for L > K,(1.20) ddtEL(�v(t)) + Æk�v(t)kE � 0;6



where Æ is a positive 
onstant and(1.21) EL((u; v)) := kvk2L2+krxuk2L2+�
kuk2L2+2�(u; v)+2(F (u); 1)+Lkuk2L2:Moreover, due to estimate (1.19)(2) and the fa
t that L > K, we have the followingimproved analogue of (1.6):(1.22) EL(�v(t)) � �1k�v(t)k2E ;for some positive �1. Thus, applying Lemma 1.1 to the di�erential inequality (1.20)and using (1.7) and (1.22), we verify that, for every bounded subset B � E,(1.23) limt!1 supfk�v(t)kE : �v(0) 2 Bg = 0and, 
onsequently, every traje
tory of equation (1.16) 
onverges (uniformly withrespe
t to the initial data belonging to bounded subsets) to the equilibrium u � 0of this equation. There remains to note that this equilibrium is lo
ally exponentiallystable (sin
e L > f 0(0), see e.g. [2℄) and, therefore, the rate of 
onvergen
e in (1.23)is, in a fa
t, exponential (i.e., (1.18) holds) and Proposition 1.2 is proven.We now study equation (1.17).Proposition 1.3. Let the above assumptions hold. Then, for every bounded subsetB � E and every 0 < � < 1=2, there exist positive 
onstants C and K (dependingonly on B and �) su
h that, for every � 2 R and every �u(�) 2 B, the followingestimate is valid:(1.24) k�w(t)kE� � CeK(t��); t � �:Proof. Di�erentiating equation (1.17) and setting �(t) := �tw(t), we have(1.25) �2t � + 
�t� ��x� = �[f 0(v + w) � f 0(v)℄�tu� f 0(v)� + g0(t) + L�tv(t):Moreover, expressing the se
ond derivative of w(t) from equation (1.17) and takinginto a

ount that �w(0) = 0 and growth restri
tion (0.2), we have(1.26) �(�) = 0; �t�(�) = �f(u(�))+ g(�)+Lu(�); k�t�(�)kL2 � Q1(k�u(�)kE);for some monotonely in
reasing fun
tion Q1.Let us now �x 0 < � < 1=2, multiply equation (1.25) by (��x)��1(�t� + ��)(where � > 0 is small enough) and integrate over 
. Then, after the standardtransformations, we have(1.27) 12 ddt ~E(��(t)) + Æ ~E(��(t)) �� �([f 0(v + w)� f 0(v)℄�tu; (��x)��1(�t� + ��))�� ([f 0(v)� f 0(0)℄�; (��x)��1(�t� + ��))++ (g0(t) +L�tv(t)� f 0(0)(�tu(t)� �tv(t)); (��x)��1(�t�+ ��)) := I1 + I2 + I3;where(1.28) ~E(��(t)) := k��(t)k2E��1 + �
k�(t)k2H��1 + 2�(�(t); �t�(t))H��1and � > 0 is small enough. Thus, we need to estimate the integrals I1, I2 and I3.We �rst note that, due to (0.4), (1.1) and (1.18), the integral I3 
an be estimatedas follows(1.29) I3 � C" + "k��(t)k2E��1 � C" + 2" ~E(��(t));where " > 0 is arbitrary and C" depends on " and on the bounded subset B � E.In order to estimate the integrals I1 and I2, we need the following lemma.7



Lemma 1.2. Let 0 � � < 1=2. Then(1.30) � 1: ku1 � (��x)��1u2kL3 � Cku1kH1+�ku2kH��1 ;2: ku3 � (��x)��1u2kL3=2 � Cku3kH�ku2kH��1 ;for all u1 2 H�+1, u2 2 H��1 and u3 2 H� and for some 
onstant C whi
h dependson �, but is independent of u1, u2 and u3.The proof of Lemma 1.2 is given in Appendix.Let us now estimate the integral I1. To this end, we �rst note that the growthrestri
tion (0.2) implies the following estimate(1.31) jf 0(v + w)� f(v)j � Cjwj � (jvj+ jv + wj); 8v; w 2 R;where the 
onstant C is independent of v and w. Moreover, expressing the term�xw from equation (1.17) and taking the H��1-norm from the both sides of theequation obtained, we have(1.32) kw(t)kH�+1 � k�2tw(t)kH��1 + 
k�tw(t)kL2 + kf(u(t))kL2++ kf(v(t))kL2 + kg(t)kL2 + Lkv(t)kL2 � k�t�(t)kH��1 + C1;where the 
onstant C1 depends on the bounded subset B, but is independent of tand � (here we have impli
itly used estimates (1.1) and (1.18) and the embeddingH1 � L6). Applying H�older inequality with exponents 6, 3 and 2 to the integral I2and using inequalities (1.31) and (1.32) and the �rst inequality of (1.30), we obtain(1.33) I1 � C(ku(t)kL6 + kv(t)kL6) � k�tu(t)kL2 kw � (��x)��1(�t� + ��)kL3� C1k�tu(t)kL2kw(t)kH�+1k�t�(t) + ��(t)kH��1 �� C2k�tu(t)kL2k��(t)k2E��1 + C3 � C"k�tu(t)k2L2 ~E(��(t)) + " ~E(��(t)) + C3;where " is an arbitrary positive 
onstant and the 
onstants C", C and Ci dependon the bounded subset B � E.Finally, applying H�older inequality with the exponents 3 and 3=2 to the integralI2 and using the se
ond estimate of (1.30), we have(1.34) I2 � kf 0(v(t)) � f 0(0)kL3k� � (��x)��1(�t�(t) + ��(t)kL3=2 �� C1kf 0(v(t)) � f 0(0)kL3k�(t)kH�k�t�(t) + ��(t)kH��1 �� C2kf(v(t))� f 0(0)kL3k��(t)k2E��1 � 2C2kf 0(v(t)) � f 0(0)kL3 ~E(��(t));where the 
onstants Ci depend on the bounded subset B � E. Inserting estimates,(1.29), (1.33) and (1.34) into the right-hand side of (1.27) and �xing " > 0 smallenough, we dedu
e that(1.35) ddt ~E(��(t)) + [Æ � C(k�tu(t)k2L2 + kf 0(v(t)) � f 0(0)kL3)℄ ~E(��(t)) �M;for some positive 
onstants C and M depending on the bounded set B of theinitial data allowed, but are independent of t and � . Moreover, due to the growthrestri
tion (0.2), the embedding H1 � L6 and estimate (1.18), we have(1.36) kf 0(v(t)) � f 0(0)kL3 � Ckv(t)kH1 (1 + kv(t)kH1) � Q(k�u(�)kE)e��(t��);8



where the positive 
onstant � and the monotonely in
reasing fun
tion Q are inde-pendent of t, � and �u(�).Applying �nally the Gronwall's inequality to (1.35) and using (1.1) in order toestimate the L2-norm of �tu, we infer(1.37) k��(t)k2E��1 � 2 ~E(��(t)) �M 0 + 2~E(��(�))e2K(t��);for some positive 
onstants M 0 and K depending only on B. Estimate (1.37),together with (1.26) and (1.32) imply (1.24) and �nish the proof of Proposition 1.3.Corollary 1.3. Let the above assumptions hold and let, in addition, �u(�) 2 E�,for some 0 � � < 1=2. Then, the following estimate holds:(1.38) k�u(t)kE� � CeK(t��);where the positive 
onstants C and K depend on k�u(�)kE� , but are independent oft and � .The proof of estimate (1.38) is analogous to the proof of Proposition 1.3, butessentially more simple, sin
e now the initial data belong to E� from the verybeginning and we need not now to split the solution u(t) by (1.16) and (1.17) and
an dire
tly di�erentiate equation (0.1) by t and set �(t) = �tu(t). Then, we obtainequation (1.25) (with L = 0 and v(t) � 0), but with di�erent initial data:�(�) = �tu(�); �t�(�) = �xu(�)� 
�tu(�)� f(u(�)) + g(�):Thus, it is not diÆ
ult to show, analogously to (1.26) and (1.32), that(1.39) k��(�)kE��1 � Q(k�u(�)kE�);for some monotone in
reasing fun
tion Q. Estimate (1.38) is now an immediate
orollary of (1.37), (1.39) and (1.32) and Corollary 1.3 is proven.Remark 1.2. It is worth to note that the estimate for the E�-norm of �w(t)obtained in Proposition 1.3 diverges exponentially as t ! +1. In 
ontrast tothat, in the autonomous 
ase, di�erential inequality (1.35) allows to obtain non-divergent estimate for the �w(t) whi
h, in a fa
t, �nishes the proof of Theorem 0.1for 0 � � < 1=2. Indeed, it follows from (1.36) that(1.40) Z 1� kf(v(t))� f 0(0)kL3 dt � C <1:Moreover, in the autonomous 
ase we also have the dissipation integral (0.8), 
onse-quently, the Gronwall's inequality applied to (1.35) gives the non-divergent estimate(1.41) ~E(��(t)) � C ~E(��(�))e��t +M 0;for some positive 
onstants C, M 0 and �. Unfortunately, the dissipation integral(0.8) usually equals in�nity in the nonautonomous 
ase, thus, the s
heme of [2℄(des
ribed above) now gives the exponentially divergent estimates only whi
h isobviously not enough for proving Theorem 0.1.The following proposition, whi
h gives a splitting of the fun
tion �tu(t) in a sumof two fun
tions one of whi
h is regular and the other is, in a sense, small, is a
ru
ial point of our method. 9



Proposition 1.4. Let the above assumptions hold. Then, for every � > 0, 0 �� < 1=2 and every bounded subset B � E, there exist positive 
onstants C� andK� su
h that, for every solution u(t) of problem (0.1) satisfying �u(�) 2 B, thereexists a splitting(1.42) �tu(t) = v1(t) + w1(t); t � �su
h that(1.43) kw1(t)kH�+1 � K�and, for every t � s � � ,(1.44) Z ts kv1(�)k2L2 d� � �(t� s) + C�:Proof. In order to 
onstru
t the fun
tions v1 and w1, we �x a large T > 0 and, atevery interval [� + (n� 1)T; � + nT ℄, we setv1(t) := �tv(t); w1(t) := �tw(t);where the fun
tions v(t) and w(t) solve equations (1.16) and (1.17) respe
tively atthe interval [� + (n� 1)T; � + nT ℄, n 2 N, with the following initial data:(1.45) �v(� + (n� 1)T ) := �u(� + (n� 1)T ); �w(� + (n� 1)T ) = 0:Then, a

ording to estimate (1.18), we have(1.46) Z �+nT�+(n�1)T kv1(�)k2L2 d� � C;where the 
onstant C = C(B) is independent of � , n and T . Thus, for every � > 0,we 
an �nd a suÆ
iently large T = T (�;B) su
h that (1.44) is satis�ed. After �xingthe length T , estimate (1.24) implies (1.43) for some K� = K(B; T ) and �nishesthe proof of Proposition 1.4.Our next task is to obtain the non-divergent analogue of estimate (1.24) usingsplitting (1.42) instead of the dissipation integral.Proposition 1.5. Let the above assumptions hold. Then, the solution �w(t) ofequation (1.17) possesses the following estimate:(1.47) k�w(t)kE� � Q�(k�u(�)kE); t � �;where the monotonely in
reasing fun
tion Q� depends on 0 � � < 1=2, but isindependent of t and � .Proof. Analyzing the proof of Proposition 1.3, we see that the exponential diver-gen
e in (1.24) appears due to the term k�tu(t)k2L2 in di�erential inequality (1.35)whi
h, in turns, appears under the estimating of the integral I1 by (1.33). Thus, our10



task is to improve estimate (1.33) using splitting (1.42). To this end, we transformthis integral as follows:(1.48) I1 = �([f 0(v + w) � f 0(v)℄v1; (��x)��1(�t� + ��))�� ([f 0(v + w) � f 0(v)℄w1; (��x)��1(�t� + ��)) := I11 + I21 ;where the fun
tions v1 and w2 are the same as in Proposition 1.4 (with a suÆ
ientlysmall parameter � whi
h will be �xed below). Then, arguing exa
tly as in (1.33),we have(1.49) I11 � C"kv1(t)k2L2 ~E(��(t)) + " ~E(��(t)) + C;where the 
onstant " > 0 
an be 
hosen arbitrarily. Applying now H�older inequalitywith the exponents 3 and 3=2 to the integral I21 and using the se
ond estimate of(1.30) and estimate (1.43), we infer(1.50) I21 � (kf 0(u(t))kL3 + kf 0(v(t))kL3)kw1(t) � (��x)��1(�t�(t) + ��(t))kL3=2� C1kw1(t)kH�k�t�(t) + ��(t)kH��1 � C2k��(t)kE� � " ~E(��(t)) + C";where the 
onstant " > 0 
an be 
hosen arbitrarily and the 
onstant C" dependson k�u(�)kE , but is independent of t and � .Using now estimates (1.49) and (1.50) instead of (1.33), we 
an improve di�er-ential inequality (1.35) as follows:(1.51) ddt ~E(��(t)) + h(t) ~E(��(t)) �M;where h(t) := Æ � C(kv1(t)k2L2 + kf 0(v(t))� f 0(0)kL3);and the positive 
onstants Æ, C andM are independent of t and � . Moreover, �xing� := Æ=(2C) in (1.44) and using (1.40), we have(1.52) Z ts h(�) d� � 12Æ(t� s)� �C; t � s � �;where the 
onstant �C depends on k�u(�)kE , but is independent of t, s and � .Applying the Gronwall's inequality to (1.51) and using (1.52), we infer the followingimproved version of (1.37):(1.53) k��(t)k2E��1 � 2 ~E(��(t)) �M 0 + 2~E(��(�))e �C�Æ(t��)=2:Estimate (1.53), together with (1.26) and (1.32) imply (1.47) and �nish the proofof Proposition 1.5.Corollary 1.4. Let the above assumptions hold. Then, for every 0 � � < 1=2,there exist positive 
onstants R� and � and a monotonely in
reasing fun
tion Qsu
h that, for every bounded subset B of E, we have(1.54) distE �U(t; �)B;�� 2 E� : k�kE� � R�	� � Q(kBkE)e��(t��);for all � 2 R and t � � .Indeed, due to Proposition 1.1, it is suÆ
ient to verify (1.54) for the absorbingset B only. But, in this 
ase, estimate (1.54) is an immediate 
orollary of (1.18)and (1.47) (we 
an set R� := Q�(kBkE ), where Q� is the same as in (1.47)).11



Corollary 1.5. Let the above assumptions hold and let, in addition, �u(�) 2 E�,for some 0 � � < 1=2. Then, the following estimate is valid:(1.55) k�u(t)kE� � Q�(k�u(�)kE�)e��(t��) + C�;where the positive 
onstants � and C� and the monotonely in
reasing fun
tion Q�are independent of t, � and �u(�).Indeed, due to Proposition 1.1 and Corollary 1.3, it is suÆ
ient to verify (1.55),for the initial data belonging to the absorbing set B only. In this 
ase, estimate(1.55) 
an be veri�ed analogously to the proof of Corollary 1.3, but using morestrong estimate (1.53) instead of (1.37).Thus, the se
ond step of the proof of Theorem 0.1 is also �nished.Step 3. The 
ase 1=2 � � � 1. At this step, we verify the dissipativity of thedynami
al pro
ess U(t; �) in the spa
es E�, 1=2 � � � 1 and, thus, �nish the proofof Theorem 0.1. To this end, it is 
onvenient to use more simple (than (1.16) and(1.17)) splitting of the solution u(t) where the �rst equation is linear, namely, weset u(t) := v(t) + w(t), where the fun
tion v(t) solves(1.56) �2t v + 
�tv ��xv = 0; �v��t=� = �u��t=�and the remainder w(t) satis�es(1.57) �2tw + 
�tw ��xw = hu(t) := g(t)� f(u(t)); �w��t=� = 0:Then, applying the E�-regularity estimate for the damped linear equation (1.56)(see e.g., [9℄), we infer that, for every 0 � � � 1,(1.58) k�v(t)kE� � Ck�u(�)kE�e��(t��); t � �;where the positive 
onstants C and � are independent of t, � and �u(�) 2 E�.Thus, it only remains to study equation (1.57).Proposition 1.6. Let the above assumptions hold and let, in addition, �u(�) 2E1=3. Then, the solution w(t) of equation (1.57) satis�es the following estimate:(1.59) k�w(t)kE1 � Q(k�u(�)kE1=3)e��(t��) + C�; t � �;where the positive 
onstants � and C� and the monotonely in
reasing fun
tion Qare independent of t, � and �u(�) 2 E1=3.Proof. A

ording to the E1-regularity theorem for damped linear wave equations(see e.g., [9℄), it is suÆ
ient to verify the following estimate:(1.60) khu(t)kL2 + k�thu(t)kL2 � Q(k�u(�)kE�)e��(t��) + C�:Moreover, due to assumptions (0.2) and (0.4) and estimate (1.13), it is only suÆ
ientto verify that(1.61) kf 0(u(t))�tu(t)kL2 � Q(k�u(�)kE�)e��(t��) + C�:In order to verify this estimate, we need to use the fa
t that �u(�) 2 E1=3 andestimate (1.55) with � = 1=3. Indeed, due to this estimate and embeddingsH1=3 � L18=7 and H4=3 � L18, we have the desired estimates for the ku(t)kL18and k�tu(t)kL18=7 . Moreover, sin
e, due to the growth restri
tion (0.2), the fun
-tion f 0(u) has a quadrati
 growth rate, then we also have the desired estimate forkf 0(u(t))kL9 . Sin
e 19 + 718 = 12 , then the H�older inequality gives (1.61) and �nishesthe proof of Proposition 1.6.We are now ready to �nish the proof of the �rst part of Theorem 0.1.12



Corollary 1.6. Let the above assumptions hold. Then, for every 1=3 � � � 1, thesolution u(t) of problem (0.1) satis�es the following estimate:(1.62) k�u(t)kE� � Q(k�u(�)kE�)e��(t��) + C�; t � �;where the positive 
onstants � and C� and the monotonely in
reasing fun
tion Qare independent of t, � and �u(�) 2 E�.Indeed, (1.62) is an immediate 
orollary of (1.58) and (1.55).Combining Corollaries 1.5 and 1.6, we obtain estimate (0.9) for any 0 � � � 1and �nish the proof of the �rst part of Theorem 0.1.Corollary 1.7. Let the above assumptions hold. Then, there exist positive 
on-stants R and � and a monotonely in
reasing fun
tion Q su
h that, for every boundedsubset B � E1=3, we have(1.63) distE1=3 �U(t; �)B;�� 2 E1 : k�kE1 � R	� � Q(kBkE1=3)e��(t��);for all � 2 R and t � � .Indeed, estimate (1.63) is also an immediate 
orollary of (1.58) and (1.55).In order to verify estimate (0.10), we use the following general fa
t on the tran-sitivity of an exponential attra
tion established in [5℄.Lemma 1.3. Let (M; d) be an abstra
t metri
 spa
e and let U(t; �) be a Lips
hitz
ontinuous dynami
al pro
ess in M, i.e(1.64) d(U(t+ �; �)m1; U(t+ �; �)m2) � CeKtd(m1;m2);for appropriate 
onstants C and K whi
h are independent of mi, � and t. Wefurther assume that there exist three subsets M1;M2;M3 �M su
h that(1.65) � distM (U(t+ �; �)M1;M2) � C1e��1t;distM (U(t+ �; �)M2;M3) � C2e��2t:Then(1.66) distM (U(t+ �; �)M1;M3) � C 0e��0t;where C 0 = CC1 + C2, �0 = �1�2K+�1+�2 .The proof of Lemma 1.3 is given in [5℄ (in the autonomous 
ase). Nevertheless,for the 
onvenien
e of the reader, we re
all it in Appendix.We are now ready to verify (0.10). Indeed, a

ording to Proposition 1.1, itis suÆ
ient to verify this estimate for the absorbing set B only (we set M1 :=B ). Then, due to Corollary 1.4, the set M1 is attra
ted exponentially to theball M2 of radius R1=3 of the spa
e E1=3. Moreover, due to Corollary 1.7, theball M2 is attra
ted exponentially to the ball M3 of radius R of the spa
e E1(even in a more strong topology of E1=3). The uniform Lips
hitz 
ontinuity of thepro
ess U(t; �) (on bounded subsets of E) is given by Corollary 1.1. Thus, estimate(0.10) now follows from the transitivity of exponential attra
tion (Lemma 1.2) and,
onsequently, Theorem 0.1 is proven. 13



Appendix. Proofs of the auxiliary lemmata.In this Appendix we give the proofs of Lemmata 1.2 and 1.3.Proof of Lemma 1.2. Let us verify the �rst estimate of (1.30). Indeed, a

ordingto the embedding theorem, we have(A.1) ku1kLp1 � Cku1kH�+1 ; where 0 � � < 1=2 and 1p1 = 12 � 1 + �3 :On the other hand, a

ording to the regularity theorem for the fra
tional powersof the Lapla
ian (see e.g. [10℄), we have(A.2) k(��x)��1u2kH1�� � C1ku2kH��1 :Applying again the embedding theorem, we infer(A.3) k(��x)��1u2kLp2 � C2k(��x)��1u2kH1�� � C3ku2kH��1 ;where 1p2 = 12 � 1��3 . Sin
e1p1 + 1p2 = 12 � 1 + �3 + 12 � 1� �3 = 13 ;then, due to H�older inequality, inequalities (A.1) and (A.3) imply the �rst estimateof (1.30).Let us now verify the se
ond inequality of (1.30). Indeed, a

ording to theembedding theorem(A.4) ku3kLp3 � C4ku3kH� ; where 1p3 = 12 � �3 :Sin
e 1p3 + 1p2 = 12 � �3 + 12 � 1��3 = 23 , then (due to H�older inequality) estimates(A.3) and (A.4) imply the se
ond estimate of (1.30) and �nish the proof of Lemma1.2.Proof of Lemma 1.3. Let � 2 R be �xed, m1 belong toM1 and let us set t = t1+t2,where ti � 0, i = 1; 2, will be �xed below. Then, owing to the �rst estimate of(1.65), there exists m2 2M2 su
h that(A.5) d(U(t1 + �; �)m1;m2) � C1e��1t1 :Then, estimate (1.64) (and the identity U(t; �) = U(t; s) Æ U(s; �) for t � s � �)implies that(A.6) d(U(t+ �; �)m1; U(t+ �; t1 + �)m2) � CC1eKt2��1t1 :On the other hand, using the se
ond estimate of (1.65), we dedu
e that there existsm3 2M3 su
h that(A.7) d(U(t+ �; t1 + �)m2;m3) � C2e��2t2 :Combining (A.5){(A.7) and noting that m1 2 M1 and t1 2 [0; t℄ is arbitrary, weobtain(A.8) distM (U(t+ �; �)M1;M3) � inft1+t2=t �CC1eKt2��1t1 + C2e��2t2� :Fixing the values ti in an optimal way (i.e. su
h that Kt1��1t2 = �2t2), we obtain(1.66). Lemma 1.3 is proven. 14
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