ASYMPTOTIC REGULARITY OF SOLUTIONS OF A
NONAUTONOMOUS DAMPED WAVE EQUATION
WITH A CRITICAL GROWTH EXPONENT.

S. ZELIK

Laboratoire d’Applications des Mathématiques - SP2MI
Boulevard Marie et Pierre Curie - Téléport 2
86962 Chasseneuil Futuroscope Cedex - France

ABSTRACT. The paper is devoted to study of the longtime behavior of solutions
of a damped semilinear wave equation in a bounded smooth domain of R3 with
the nonautonomous external forces and with the critical cubic growth rate of the
nonlinearity. In contrast to the previous papers, we prove the dissipativity of this
equation in higher energy spaces E“, 0 < a < 1, without the usage of the dissipation
integral (which is infinite in our case).

INTRODUCTION.

We study the following damped wave equation in a smooth bounded domain
of R3:

(0.1)

!
T

{BEU+76tu—Azu+f(U)=g(t), ul,, =0, t>1,

u|t:7‘ = Ur, atu|t:7' =u

Here u = u(t,z) is an unknown function, A, is the Laplacian with respect to
the variable z = (z!,2% 2%), ¥ > 0 is a given dissipation parameter, 7 € R and
f = f(u) and g = g(t,z) are given nonlinear interaction function and external
forces respectively.

We also assume that the nonlinear interaction function f € C2(R) has a critical

cubic growth rate, i.e.
(0.2) [f"(W] < C(L+ul), ueR,  f(0)=0
and satisfy the standard dissipativity assumption

(0.3) lim inf flw) > =\,

lu| 00 U
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where )\ is the first eigenvalue of the Laplacian in Q (with the Dirichlet boundary
conditions) and the external forces g(¢) satisfy

(0.4) 9,0tg € L=(R, L? ().

It is well-known that, under the above assumptions, equation (0.1) is uniquely
solvable in the energy phase space E := H(Q) x L?(Q), for every 7 € R and
& = (ur,ul) € E, and, thus, generates a dynamical process in E via

(0.5) Ult,7)&r = &u(t), TER, t>7,

where &, (t) := (u(t), Opu(t)) is a unique solution of (0.1) with the initial data &, € E,
see [1-2], [4], [9] and the references therein.
It is also well-known that, in the subcritical case

(0.6) [f" (W) < CA+ [ul®), & <1,

problem (0.1) generates a dissipative dynamical process not only in the energy
phase space E, but also in more regular phase spaces E%, 0 < a < 1, where

(0.7) E® .= H"' x H®

and H® := D((—A.)*/?), s € R, is a scale of Hilbert spaces generated by the
Laplacian (equipped by the Dirichlet boundary conditions). Moreover, dynamical
process (0.5) associated with equation (0.1) in E possesses a uniformly attracting
set bounded in E!, see [4] for details. In particular, this implies (see [2] and [4])
the existence of a global (uniform) attractor A for dynamical process (0.5) and its
boundedness in more regular space E' = (H2() N H} (Q)) x HE(Q).

In contrast to that, in the case of the critical cubic growth rate, the analogues
of the above results were obtained in the autonomous case (g(t) = go € L?*(Q))
only (see [2] and [8]) and their proof essentially used the finiteness of the so-called
dissipation integral

(0.8) /|@MM;@<m

which is usually infinite in the nonautonomous case (see also [12] where equations
of the view (0.1) whose dissipation integral is infinite, but the rate of its divergence
is, in a sense, small were considered).

In the present paper, we generalize the method of [2] using instead of the dis-
sipation integral the special approximations of the solution u(t) by the piecewise
continuous regular functions (see Proposition 1.4) and, thus, we extend the results
mentioned above to the nonautonomous case. To be more precise, the main result
of the paper is the following theorem.

Theorem 0.1. Let assumptions (0.2)—(0.4) hold. Then,

1) For every a € [0,1], equation (0.1) generates a dissipative dynamical process
U(t,7) in the phase space E®, i.e., for every solution u(t) of this equation satisfying
the assumption &,(1) € E®, the following estimate hold:

(0.9) (@)l < QUG lzw)e ) +C,
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where the positive constants p and C and the monotonely increasing function @Q
depend on a, but are independent of t, T and &, (7).

2) The R-ball Bg of the space E' centered at 0 is a uniform exponentially at-
tracting set for dynamical process (0.5) in the phase space E if R is large enough,
i-e. there exist a positive constant p and a monotone increasing function @ such
that, for every T € R and t > 0 and every bounded set B in E, we have

(0.10) distp (U(t +7,7)B,Br) < Q(|Bllp)e™",

where disty (X,Y) denotes the non-symmetric Hausdorff distance between the sub-
sets X and Y of the space V.

In particular, Theorem 0.1 implies that the global/uniform attractor .4 of prob-
lem (0.1) is bounded in E'. Moreover, estimate (0.10) can be applied in order to
construct the exponential attractor M for this problem which will be bounded in
E! (see e.g., [5]).

We emphasize once more that, in contrast to the previous papers, our method
uses neither the Lyapunov function nor the dissipation integral and, thus, can be
extended to the class of nongradient damped hyperbolic systems, more general
classes of the nonlinearities (e.g., depending explicitly on ¢) and even to the class of
damped hyperbolic equations in unbounded domains (where the dissipation integral
is also usually infinite, see e.g. [7] and [11]). We return to these problems somewhere
else.

The paper is organized as follows. The proof of Theorem 0.1 is given in Section
1 and some auxiliary results which are necessary for that proof are considered in
Appendix.

Acknowledgments. This research is partially supported by INTAS grant no. 00-
899 and CRDF grant no. 2343.
§1 PROOF OF THEOREM 0.1.
We divide the proof of this theorem on several steps.

Step 1. Dissipativity in E. At this step, extending the arguments of [1] and [6]
to the nonautonomous case, we verify that equation (0.1) generates a dissipative
process in the energy phase space E.

Proposition 1.1. Let the assumptions of Theorem 0.1 hold. Then, for every T € R
and & € E, problem (0.1) possesses a unique solution &, € C([1,+0),E) and

(1.1) 1€u(®llz < QUIER), =7,

where the monotonic function Q is independent of t and 7. Moreover, the dynamical
process U(t,7) : E — E associated with this equation possesses a uniform bounded
absorbing set B C E, i.e., for every bounded set B C E there ezists a time T = T (B)
such that

(1.2) Ut+rm)BCB, Vt>T, TeR

Proof. The existence and uniqueness of the energy solution &, (t) of equation (0.1)
is well-known, so we omit its proof here and only give the formal derivation of
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assertions (1.1) and (1.2) which can be justified in a standard way using the Galerkin
approximations, see [2] and [9] for the details. To this end, we multiply equation
(0.1) by 2(0su + Bu), where 8 > 0 is a sufficiently small positive number which will
be specified below, and integrate over 2. Then, we have

(1.3) %5(&(0) +2(y = B)Idru®)lZ> + 2Bl Vau)lZ> + 28(f (u(®), u(t)) =

where (u,v) denotes the standard inner product in L?(Q),
(1.4) E((u,v)) = lZ2 + [IVaullZz + BrllullZ + 28(u,v) + 2(F(u), 1)

and F(u) := fou f () dv. Moreover, the dissipativity assumption (0.3) implies that,
for every € > 0,

(1.5) 1. flu)-u>—0 —e)u>-C., 2. F(u)> —%(Al —e)|u* - C.

with the appropriate constant C.. Using the second estimate of (1.5) and the
inequality ||V,ul|22 > Ai]|ul|?2, we deduce that, for sufficiently small 8 > 0

(1.6) E(&u(®) > plléu® |l - C,

for some positive constants p; and C;. On the other hand, due to the growth
restriction (0.2) and the embedding H' C L5, we have

(1.7) Eu(®) < Cll&u®lle +1)*,

for some positive constant C'. Moreover, applying the first inequality of (1.5) to
equation (1.3) and using the Cauchy-Schwartz inequality, we finally have

d
(1.8) &) + Sl < k= Co(L+ llgll7(®,12):

for some positive constants § and Cs. In order to deduce the desired estimates of
[|€x(t)]|E from the differential inequality (1.8), we need the following lemma.

Lemma 1.1. Let& : E — R be a continuous semibounded from below functional on
a Banach space E. Then, for every M > 0, ¢ > 0 and every function &, € C(R;, E)
which satisfies (in the sense of distributions) the differential inequality (1.8) and the
additional assumption

£(6(0)) < M,

there ezists time T = T'(e, M) which depends on M and e, but is independent of a
concrete choice of the function &,(t), such that

(1.9) E(€u(t)) <sup{E(€) : €€ B, dliElE < k+e}, VE>T.

The proof of this lemma can be found, e.g. in [3, Lemma 2.7].
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We are now ready to finish the proof of Proposition 1.1. Indeed, applying Lemma
1.1 (with the initial time ¢ = 7 instead of ¢ = 0) to the differential inequality (1.8)
and using estimates (1.6) and (1.7), we obtain that the set

110) B {ee @ <sw{el) ne B olall <2k}

is a bounded uniformly absorbing set for the process U (t, 7) associated with problem
(0.1). Thus, (1.2) is verified. Let us verify (1.1). To this end, we note that it is
sufficient to verify this estimate on the finite interval [7, 7+T, where T' = T'(||¢/|| &)
is the same as in (1.2) (since &,(t) € B for ¢ > 7+ T and B is bounded). Integrating
now inequality (1.8) over [r,7 +t], t < T, we have

(1.11) E(&u(t + 7)) < E(&u(T)) + Kt

This estimate (together with (1.6) and (1.7)) gives the desired estimate for &, (t+7),
t < T and finishes the proof of Proposition 1.1.

Corollary 1.1. Let the above assumptions hold and let ui(t) and us(t) be two
solutions of problem (0.1). Then, the following estimate holds:

(1.12) €0, (8) = bus D | < CeXED|6y (1) = €wa (DB, 2T,

where the constants C' and K depend on ||&y, (T)||E, @ = 1,2, but are independent
of t, T and the concrete choice of the solutions uy and us.

The proof of this estimate is standard and we omit it here, see e.g. [2] and [9].
Assertions (1.1) and (1.2) can be reformulated in a more standard form of a
single estimate.

Corollary 1.2. Let the above assumptions hold. Then, the following estimate hold
for every solution u(t) of problem (0.1):

(1.13) 1€l < QUIEu(MIm)e "7 + C,

where the positive constants C' and o and the monotonely increasing function Q) are
independent of t, T and &,(7).

Indeed, estimate (1.13) is an obvious corollary of (1.1) and (1.2), thus we omit
its proof here and only recall that the constant > 0 in (1.13) can be chosen
arbitrarily, C' can be specified as the radius of the absorbing ball for the process
U(t,7) and the function () can be then computed in terms of a, the function @
defined in (1.1) and the function T' defined in (1.2).

Thus, estimate (0.9) is verified for @« = 0 and the first step of the proof of
Theorem 0.1 is finished.

Remark 1.1. Dissipativity assumption (0.3) can be replaced by slightly more
strong (but, in a sense, more natural) one:

(1.14) l‘irlninff'(u) > —Ap.
uU|—>00
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Indeed, on the one hand, this assumption obviously implies (0.3), but, on the other
hand, it is not difficult to deduce from (1.14) that: for every € > 0, there exists a
constant C. such that

F(u) < f(u)-u+ %(/\1 —e)|ul* +C., Yu€eR.

Estimating the term (f(u),u) in (1.3) by this inequality, we deduce more simple
analogue of the differential inequality (1.8):

(1.15) L E(Eu(1) +0E(E(1) <k

and finish the proof of Proposition 1.1 in a standard way (see [2] and [9]) applying
the Gronwall’s inequality to this relation (without using Lemma 1.1).

It is also worth to emphasize that the function f which satisfies (1.14) and (0.2)
automatically satisfies the assumptions of Babin and Vishik, see [2, Sections 1.8
and I1.6].

Step 2. Dissipativity in E® with 0 < a < 1/2. At this step, we prove
estimate (0.9) for 0 < @ < 1/2 and construct an exponentially attracting set which
is bounded in E%. To this end, following [2], we split the solution u(t) of equation
(0.1) as follows: u(t) = v(t) + w(t), where v(t) solves the following autonomous
problem:

(1.16) O2v + 70w — Agv + f(v) + Lv = 0, £U|t:‘r = £U|t=r’ t>T,
where L is a sufficiently large positive number and the remainder w(¢) satisfies:
(L17)  Ofw+y0mw — Agw + [f(v +w) = f(v)] = g(t) + Lo(t), &ul,_, =0.

We first study equation (1.16).

Proposition 1.2. Let the above assumptions hold. Then, there exists a positive
constant L such that the solution &,(t) of (1.16) satisfies

(1.18) €@ 1E < QUIEw(T)IlE)e™ 7,
where the positive constant i and monotonely increasing function @@ are independent
of t, T and &, (7).

Proof. We first note that it is sufficient to prove estimate (1.18) for = 0 only (since
equation (1.16) is autonomous). We also note that the dissipativity assumption
(0.3) and the fact that f(0) = 0 imply that

K
(1.19) LS wz K, 2 Pl > 5,
for some positive K. Then, multiplying equation (1.16) by d;v + Bv, integrating

over () and arguing as in derivation of (1.8) but using (1.19) instead of (1.5), we
obtain that, for L > K,

(1.20 LEn(6(®) + 60l <0,
6



where § is a positive constant and
(1.21) EL(u,v)) = ollZ2 +1IVoullz: +Byllullzz +28(u, v) +2(F (u), 1) + Lful 7.

Moreover, due to estimate (1.19)(2) and the fact that L > K, we have the following
improved analogue of (1.6):

(1.22) EL(&(t) > mllé )z,

for some positive pi. Thus, applying Lemma 1.1 to the differential inequality (1.20)
and using (1.7) and (1.22), we verify that, for every bounded subset B C E,
(1.23) Jim sup{l&, ()l : &(0) € B =0

and, consequently, every trajectory of equation (1.16) converges (uniformly with
respect to the initial data belonging to bounded subsets) to the equilibrium u = 0
of this equation. There remains to note that this equilibrium is locally exponentially
stable (since L > f'(0), see e.g. [2]) and, therefore, the rate of convergence in (1.23)
is, in a fact, exponential (i.e., (1.18) holds) and Proposition 1.2 is proven.

We now study equation (1.17).

Proposition 1.3. Let the above assumptions hold. Then, for every bounded subset
B C E and every 0 < a < 1/2, there exist positive constants C' and K (depending
only on B and «) such that, for every 7 € R and every &,(7) € B, the following
estimate is valid:

(1.24) 16w (@) pa < CeXED] ¢ > 1.

Proof. Differentiating equation (1.17) and setting 0(t) := d;w(t), we have
(1.25) 920+ v010 — A0 = —[f'(v +w) — f'(v)]0u — f'(v)0 + g'(t) + Lo (t).

Moreover, expressing the second derivative of w(t) from equation (1.17) and taking
into account that &,(0) = 0 and growth restriction (0.2), we have

(1.26) 8(7) =0, 9,6(7) = —f(u(r)) +g(7) + Lu(r), 18:0()||L> < Q1(I&u(T)IE),
for some monotonely increasing function ().

Let us now fix 0 < a < 1/2, multiply equation (1.25) by (—A,)*~1(8,0 + 30)
(where 8 > 0 is small enough) and integrate over Q. Then, after the standard
transformations, we have

(127) 9 E(e ) + 6 () <
< —([f'(v +w) = f'(0)]0u, (=A,)* "1 (8,0 + 56)) -
— ([f'(v) = F'(0)]8, (=As)*~1 (0,0 + 58))+
+(g'(t) + Lo (t) — F'(0)(Bpu(t) — Bpu(t)), (—A2)* "1 (08 + 6)) := I + I + I,
where
(128)  E€®) == GO Zas + BYNOE) [3rams + 28(0(2), Be6(t)) as
and 8 > 0 is small enough. Thus, we need to estimate the integrals I;, I and I3.

We first note that, due to (0.4), (1.1) and (1.18), the integral Is can be estimated
as follows

(1.29) I < Ce +elléo(Dllpar < Ce + 26 (60(1)),

where € > 0 is arbitrary and C. depends on £ and on the bounded subset B C E.
In order to estimate the integrals I; and I3, we need the following lemma.
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Lemma 1.2. Let 0 < a < 1/2. Then

{ Lo luy - (=82)* tusllps < Ollun | gove ||luz |l ga-1,

1.30
(1.30) 2. s - (~A0)* Yugllyore < Clus e fusllsze 1,

for allu; € Ho uy € H* ! and us € H® and for some constant C which depends
on «a, but is independent of u1, us and us.

The proof of Lemma 1.2 is given in Appendix.
Let us now estimate the integral I;. To this end, we first note that the growth
restriction (0.2) implies the following estimate

(1.31) If (v +w)— f(v)| < Clw| - (Jv] + |v +wl|), Yv,we R,

where the constant C' is independent of v and w. Moreover, expressing the term
A,w from equation (1.17) and taking the H*~!-norm from the both sides of the
equation obtained, we have

(1.32)  [lw@®)llge+s < N10Fw®)|ga-—1 + 0w (@)l L2 + [ f (w®)llz2+
+ [1f @)z + lg@ll2 + Lllo@) |2 < 10:0(E)|| a1 + Ch,
where the constant C; depends on the bounded subset B, but is independent of ¢
and 7 (here we have implicitly used estimates (1.1) and (1.18) and the embedding
H!' c L5). Applying Hélder inequality with exponents 6, 3 and 2 to the integral I
and using inequalities (1.31) and (1.32) and the first inequality of (1.30), we obtain
(1.33) L < C(lu@®llre +[lv®)llre) - 10su()r2 [lw - (=A2)* (860 + BO)|| 2
< Cil|Geu(®) |2 llw (@) || o+ 10:0(t) + BO(E)]| a1 <

< Colldpu(t)ll2]1€0 (1) || a1 + Cs < Cel|Bru(t)||72€ (€0 (1)) + €€ (&4 (2)) + Ca,
where ¢ is an arbitrary positive constant and the constants C., C' and C; depend
on the bounded subset B C E.

Finally, applying Holder inequality with the exponents 3 and 3/2 to the integral
I, and using the second estimate of (1.30), we have

(1.34) L <[|f'(0(t) = f'O)llz2ll0 - (—2z)* 1 (:6(2) + BOE) [ /2 <
< Cillf' (w®) = £/ O)lzall0@) = [10:6(2) + BOE)| | ra—r <
< Collf (1) = £ (O)|all€s (1) Famr < 2Callf'(0(t) = F'(0)l o€ (€0 (1)),
where the constants C; depend on the bounded subset B C E. Inserting estimates,

(1.29), (1.33) and (1.34) into the right-hand side of (1.27) and fixing € > 0 small
enough, we deduce that

(1.35) %g(fe(t)) +[0 = CIoeu®)l72 + I1f' (0(®) = £ Olz2)IE € (1) < M,

for some positive constants C' and M depending on the bounded set B of the
initial data allowed, but are independent of ¢ and 7. Moreover, due to the growth
restriction (0.2), the embedding H' C L° and estimate (1.18), we have

(136) [If'(v(®) = £'(0)[lrs < Cllo@®lm (1 + lo@)l[ ) < QUIEL(T)]IB)e 7,
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where the positive constant p and the monotonely increasing function ) are inde-
pendent of ¢, 7 and &, (7).

Applying finally the Gronwall’s inequality to (1.35) and using (1.1) in order to
estimate the L2-norm of d,u, we infer

(1.37) 160 (8)][5a-1 < 260 (1) < M + 28 (Eg(r))e 77,

for some positive constants M’ and K depending only on B. Estimate (1.37),
together with (1.26) and (1.32) imply (1.24) and finish the proof of Proposition 1.3.

Corollary 1.3. Let the above assumptions hold and let, in addition, &, (1) € E“,
for some 0 < a < 1/2. Then, the following estimate holds:

(1.38) [€u() g < CeXU7T),

where the positive constants C and K depend on ||&,(7)||g=, but are independent of
t and T.

The proof of estimate (1.38) is analogous to the proof of Proposition 1.3, but
essentially more simple, since now the initial data belong to E® from the very
beginning and we need not now to split the solution u(t) by (1.16) and (1.17) and
can directly differentiate equation (0.1) by ¢ and set 8(t) = O,u(t). Then, we obtain
equation (1.25) (with L = 0 and v(t) = 0), but with different initial data:

0(r) = Owu(r), 0:0(7) = Agu(r) — Y0pu(r) — f(u(7)) + 9(7).
Thus, it is not difficult to show, analogously to (1.26) and (1.32), that

(1.39) 160 (D) pa-1 < QUUIEw(T) || =),

for some monotone increasing function Q). Estimate (1.38) is now an immediate
corollary of (1.37), (1.39) and (1.32) and Corollary 1.3 is proven.

Remark 1.2. It is worth to note that the estimate for the E%-norm of &,(t)
obtained in Proposition 1.3 diverges exponentially as ¢ — +o0o. In contrast to
that, in the autonomous case, differential inequality (1.35) allows to obtain non-
divergent estimate for the &, (¢) which, in a fact, finishes the proof of Theorem 0.1
for 0 < a < 1/2. Indeed, it follows from (1.36) that

(1.40) [ 150@) - £ Ol dr < € < o

Moreover, in the autonomous case we also have the dissipation integral (0.8), conse-
quently, the Gronwall’s inequality applied to (1.35) gives the non-divergent estimate

(1.41) E(&o(t)) < CE(Eo(m))e ™ + M,

for some positive constants C', M’ and u. Unfortunately, the dissipation integral
(0.8) usually equals infinity in the nonautonomous case, thus, the scheme of [2]
(described above) now gives the exponentially divergent estimates only which is
obviously not enough for proving Theorem 0.1.

The following proposition, which gives a splitting of the function dyu(t) in a sum
of two functions one of which is regular and the other is, in a sense, small, is a
crucial point of our method.

9



Proposition 1.4. Let the above assumptions hold. Then, for every p > 0, 0 <
a < 1/2 and every bounded subset B C E, there exist positive constants C,, and
K, such that, for every solution u(t) of problem (0.1) satisfying &,(7) € B, there
exists a splitting

(1.42) Oru(t) = vi(t) +wi(t), t>71
such that
(1.43) lwi ()] g+ < Ky

and, for everyt > s>,
t
(1.44) / lo1 (K)||3.2 dis < p(t — s) + C.

Proof. In order to construct the functions v; and w;, we fix a large T" > 0 and, at
every interval [T + (n — 1)T, 7 + nT], we set

v1 (t) := O (t), wi(t) := Opw(t),

where the functions v(t) and w(t) solve equations (1.16) and (1.17) respectively at
the interval [T + (n — 1)T, 7 + nT], n € N, with the following initial data:

(145) EU(T + (n - I)T) = fu(T + (n - I)T)a Ew(T + (n - I)T) =0.

Then, according to estimate (1.18), we have

T+nT
(1.46) / s ()2 dr < C,
T+ (n—1)T

where the constant C' = C(B) is independent of 7, n and T'. Thus, for every p > 0,
we can find a sufficiently large T' = T'(u, B) such that (1.44) is satisfied. After fixing
the length T', estimate (1.24) implies (1.43) for some K, = K(B,T) and finishes
the proof of Proposition 1.4.

Our next task is to obtain the non-divergent analogue of estimate (1.24) using
splitting (1.42) instead of the dissipation integral.

Proposition 1.5. Let the above assumptions hold. Then, the solution &,(t) of
equation (1.17) possesses the following estimate:

(1.47) 16w(@®lze < Qall&u(n)llE), =T,

where the monotonely increasing function @, depends on 0 < a < 1/2, but is
independent of t and T.

Proof. Analyzing the proof of Proposition 1.3, we see that the exponential diver-

gence in (1.24) appears due to the term ||0;u(t)||3. in differential inequality (1.35)

which, in turns, appears under the estimating of the integral I; by (1.33). Thus, our
10



task is to improve estimate (1.33) using splitting (1.42). To this end, we transform
this integral as follows:

(148) L = ~([f'(v +w) = f'(0)]v1, (= A;)*71 (38 + 56))—
— ([f'(v +w) = f'()]wi, (~A;)* 7180 + 59)) := I} + I,
where the functions vy and w, are the same as in Proposition 1.4 (with a sufficiently

small parameter p which will be fixed below). Then, arguing exactly as in (1.33),
we have

(1.49) It < Cellor (8)|172€(&a (1) +£€(¢p(1) + C,

where the constant € > 0 can be chosen arbitrarily. Applying now Holder inequality
with the exponents 3 and 3/2 to the integral I? and using the second estimate of
(1.30) and estimate (1.43), we infer

(1.50) 17 < (Ilf"(w®)llps + If () lz)llwi () - (=A2)*7 (0e8(t) + BO)) |3/
< Cillwi (1) ||m=118:6(2) + BOE)l | a1 < Calléo ()| < e€(Ep (1) + C-,

where the constant € > 0 can be chosen arbitrarily and the constant C. depends
on ||&.(7)||, but is independent of ¢ and .

Using now estimates (1.49) and (1.50) instead of (1.33), we can improve differ-
ential inequality (1.35) as follows:

(1.51) ag(ﬁe(t)) +h(t)E(& (1) < M,

where

h(t) := 6 = Cllor(DI7= + 1 (w(t) = f(0)Le),
and the positive constants §, C' and M are independent of ¢t and 7. Moreover, fixing
u:=0/(2C) in (1.44) and using (1.40), we have

t
(1.52) / h(k) dk > %J(t—s)—é, t>s>m,

where the constant C' depends on ||,(7)||g, but is independent of ¢, s and 7.
Applying the Gronwall’s inequality to (1.51) and using (1.52), we infer the following
improved version of (1.37):

(1.53) 16 (#) 131 < 2E(&0 (1)) < M +2E (&9 (r))e” 0 7/2,
Estimate (1.53), together with (1.26) and (1.32) imply (1.47) and finish the proof
of Proposition 1.5.

Corollary 1.4. Let the above assumptions hold. Then, for every 0 < a < 1/2,
there exist positive constants R, and p and a monotonely increasing function @Q
such that, for every bounded subset B of E, we have

(1L54)  dists (U(6,7)B,{€ € B* : [[€ls= < Ra}) < QUIBIp)e 7,
forallT€R andt > T.

Indeed, due to Proposition 1.1, it is sufficient to verify (1.54) for the absorbing
set B only. But, in this case, estimate (1.54) is an immediate corollary of (1.18)
and (1.47) (we can set Ry := Qo (||B||£), where @, is the same as in (1.47)).
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Corollary 1.5. Let the above assumptions hold and let, in addition, &, (1) € E“,
for some 0 < a < 1/2. Then, the following estimate is valid:

(1.55) leu® e < Qallgu()llzm)e 4 + Ca,

where the positive constants p and C, and the monotonely increasing function Q.
are independent of t, 7 and &, (7).

Indeed, due to Proposition 1.1 and Corollary 1.3, it is sufficient to verify (1.55),
for the initial data belonging to the absorbing set B only. In this case, estimate
(1.55) can be verified analogously to the proof of Corollary 1.3, but using more
strong estimate (1.53) instead of (1.37).

Thus, the second step of the proof of Theorem 0.1 is also finished.

Step 3. The case 1/2 < o < 1. At this step, we verify the dissipativity of the
dynamical process U (t, 7) in the spaces E%, 1/2 < a < 1 and, thus, finish the proof
of Theorem 0.1. To this end, it is convenient to use more simple (than (1.16) and
(1.17)) splitting of the solution u(t) where the first equation is linear, namely, we
set u(t) := v(t) + w(t), where the function v(t) solves

(1.56) Fv+y0w —Av =0, &,_ =&,

and the remainder w(t) satisfies

(1.57) Ofw +y0w — Agw = hy(t) == g(t) — f(u(t), &ul,_, =0.

Then, applying the E%-regularity estimate for the damped linear equation (1.56)
(see e.g., [9]), we infer that, for every 0 < a < 1,

(1.58) 1€ llpe < Clléu(T)llpae™#=7), t> 7,

where the positive constants C' and p are independent of ¢, 7 and &,(7) € E®.
Thus, it only remains to study equation (1.57).

Proposition 1.6. Let the above assumptions hold and let, in addition, &,(7) €
E'/3. Then, the solution w(t) of equation (1.57) satisfies the following estimate:

(1.59) 16wzt < QUIEL(T)||gr/s)e "D 4 C*, t >,

where the positive constants pu and C* and the monotonely increasing function Q
are independent of t, T and &,(T) € E'/3.

Proof. According to the E'-regularity theorem for damped linear wave equations
(see e.g., [9]), it is sufficient to verify the following estimate:

(1.60) Ihu(®lzz + 10hu(®)lr2 < QUI€u(T)l|p=)e "7 + C*.

Moreover, due to assumptions (0.2) and (0.4) and estimate (1.13), it is only sufficient
to verify that

(1.61) 1 (w(®)0pu(®) 22 < QUI€u(T)lla)e™ ") + C*.

In order to verify this estimate, we need to use the fact that &,(r) € E'/? and
estimate (1.55) with @ = 1/3. Indeed, due to this estimate and embeddings
H'Y3 ¢ L'8/7T and H*/® c L', we have the desired estimates for the ||u(t)||.1=
and ||0;u(t)||;1s/7. Moreover, since, due to the growth restriction (0.2), the func-
tion f'(u) has a quadratic growth rate, then we also have the desired estimate for
| f'(u(t)||ro. Since §+ 15 = 3, then the Holder inequality gives (1.61) and finishes
the proof of Proposition 1.6.

We are now ready to finish the proof of the first part of Theorem 0.1.
12



Corollary 1.6. Let the above assumptions hold. Then, for every 1/3 < a <1, the
solution u(t) of problem (0.1) satisfies the following estimate:

(1.62) 1€z < QUIEL(T)IIE=)e 77 +C%, £ >,

where the positive constants pu and C* and the monotonely increasing function Q
are independent of t, T and &, (1) € E.

Indeed, (1.62) is an immediate corollary of (1.58) and (1.55).
Combining Corollaries 1.5 and 1.6, we obtain estimate (0.9) for any 0 < o < 1
and finish the proof of the first part of Theorem 0.1.

Corollary 1.7. Let the above assumptions hold. Then, there exist positive con-
stants R and i and a monotonely increasing function Q) such that, for every bounded
subset B C E'/3, we have

(1.63) distga/s (U(t,7)B,{€ € E' : ||€]|m < R}) < Q(|B||prs)e ),

forallT€R andt > T.

Indeed, estimate (1.63) is also an immediate corollary of (1.58) and (1.55).
In order to verify estimate (0.10), we use the following general fact on the tran-
sitivity of an exponential attraction established in [5].

Lemma 1.3. Let (M, d) be an abstract metric space and let U(t, ) be a Lipschitz
continuous dynamical process in M, i.e

(1.64) AU+ 7,7)m1, Ut + 7,7)ms) < Ceth(ml ,M2),

for appropriate constants C and K which are independent of m;, 7 and t. We
further assume that there exist three subsets My, My, M3 C M such that

distp (U (t + 7, 7) My, M) < Cre 21t

1.65
( ) { dist aq (U(t + 7, T)MQ,M3) < Chre 22t

Then
(1.66) dist g (U (t +7,7) My, M3) < C'e™ 't

! [— [e5NeD)
where C' = CC, + O, o' = ooy

The proof of Lemma 1.3 is given in [5] (in the autonomous case). Nevertheless,
for the convenience of the reader, we recall it in Appendix.

We are now ready to verify (0.10). Indeed, according to Proposition 1.1, it
is sufficient to verify this estimate for the absorbing set B only (we set M; :=
B). Then, due to Corollary 1.4, the set M, is attracted exponentially to the
ball My of radius Ry/3 of the space E/3. Moreover, due to Corollary 1.7, the
ball My is attracted exponentially to the ball M3 of radius R of the space E!
(even in a more strong topology of E'/ 3). The uniform Lipschitz continuity of the
process U(t, 7) (on bounded subsets of E) is given by Corollary 1.1. Thus, estimate
(0.10) now follows from the transitivity of exponential attraction (Lemma 1.2) and,
consequently, Theorem 0.1 is proven.
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APPENDIX. PROOFS OF THE AUXILIARY LEMMATA.

In this Appendix we give the proofs of Lemmata 1.2 and 1.3.

Proof of Lemma 1.2. Let us verify the first estimate of (1.30). Indeed, according
to the embedding theorem, we have

1 1 1
(A1) Juallee < Cllurllges:, where0<a<1/2and — == — -2
p1 2 3
On the other hand, according to the regularity theorem for the fractional powers

of the Laplacian (see e.g. [10]), we have

(A.2) 1(=22)* tus| 1o < Cillusllga-1.

Applying again the embedding theorem, we infer

(A.3) 1(=A0)* tuzllzes < Call(=A0)* usllmi-a < Cslluzllga-1,
where p% = % - PTQ Since

1 1 1 14+a 1 1—-a 1
+

P opp 2 3 2 3 3
then, due to Holder inequality, inequalities (A.1) and (A.3) imply the first estimate
of (1.30).
Let us now verify the second inequality of (1.30). Indeed, according to the
embedding theorem

1 1
(A.4) lusllirs < Collugllsre,  where -~ =2 %

Since p% + plz = % -2+ % — I_Ta = %, then (due to Holder inequality) estimates

(A.3) and (A.4) imply the second estimate of (1.30) and finish the proof of Lemma
1.2.

Proof of Lemma 1.3. Let 7 € R be fixed, m; belong to My and let us set t = t1 + 2,
where t; > 0, i = 1,2, will be fixed below. Then, owing to the first estimate of
(1.65), there exists ma € M, such that

(A.5) d(U(t1 + 7,7)m1,ma) < Cre” 11,

Then, estimate (1.64) (and the identity U(t,7) = U(t,s) oU(s,7) for t > s > 1)
implies that

(A.6) AUt +7,7)my, U(t + 7,11 + T)mgy) < CCyeft2mort,

On the other hand, using the second estimate of (1.65), we deduce that there exists
ms € M3 such that

(A7) d(U(t + 7,t1 + T)ma, m3) < Care™ "2,
Combining (A.5)—(A.7) and noting that m; € M; and t; € [0,¢] is arbitrary, we

obtain

(A.8) distpm (U(t + 7, 7) My, M3) < . .}_I,}f . (CCreftm ot 4 Che*2t2) |
1 2=

Fixing the values ¢; in an optimal way (i.e. such that Kt; —a;its = asts), we obtain
(1.66). Lemma 1.3 is proven.
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