
ASYMPTOTIC REGULARITY OF SOLUTIONS OF ANONAUTONOMOUS DAMPED WAVE EQUATIONWITH A CRITICAL GROWTH EXPONENT.S. ZelikLaboratoire d'Appliations des Math�ematiques - SP2MIBoulevard Marie et Pierre Curie - T�el�eport 286962 Chasseneuil Futurosope Cedex - FraneAbstrat. The paper is devoted to study of the longtime behavior of solutionsof a damped semilinear wave equation in a bounded smooth domain of R3 withthe nonautonomous external fores and with the ritial ubi growth rate of thenonlinearity. In ontrast to the previous papers, we prove the dissipativity of thisequation in higher energy spaes E�, 0 < � � 1, without the usage of the dissipationintegral (whih is in�nite in our ase).Introdution.We study the following damped wave equation in a smooth bounded domain 
of R3 :(0.1) ( �2t u+ �tu��xu+ f(u) = g(t); u���
 = 0; t � �;u��t=� = u� ; �tu��t=� = u0� :Here u = u(t; x) is an unknown funtion, �x is the Laplaian with respet tothe variable x = (x1; x2; x3),  > 0 is a given dissipation parameter, � 2 R andf = f(u) and g = g(t; x) are given nonlinear interation funtion and externalfores respetively.We also assume that the nonlinear interation funtion f 2 C2(R) has a ritialubi growth rate, i.e.(0.2) jf 00(u)j � C(1 + juj); u 2 R; f(0) = 0and satisfy the standard dissipativity assumption(0.3) lim infjuj!1 f(u)u > ��1;1991 Mathematis Subjet Classi�ation. 37B40, 37B45.Key words and phrases. damped wave equations, ritial growth rate, nonautonomous attra-tors, regularity of attrators. Typeset by AMS-TEX1



where �1 is the �rst eigenvalue of the Laplaian in 
 (with the Dirihlet boundaryonditions) and the external fores g(t) satisfy(0.4) g; �tg 2 L1(R; L2 (
)):It is well-known that, under the above assumptions, equation (0.1) is uniquelysolvable in the energy phase spae E := H10 (
) � L2(
), for every � 2 R and�� := (u� ; u0� ) 2 E, and, thus, generates a dynamial proess in E via(0.5) U(t; �)�� := �u(t); � 2 R; t � �;where �u(t) := (u(t); �tu(t)) is a unique solution of (0.1) with the initial data �� 2 E,see [1-2℄, [4℄, [9℄ and the referenes therein.It is also well-known that, in the subritial ase(0.6) jf 00(u)j � C(1 + juj�); � < 1;problem (0.1) generates a dissipative dynamial proess not only in the energyphase spae E, but also in more regular phase spaes E�, 0 � � � 1, where(0.7) E� := H�+1 �H�and Hs := D((��x)s=2), s 2 R, is a sale of Hilbert spaes generated by theLaplaian (equipped by the Dirihlet boundary onditions). Moreover, dynamialproess (0.5) assoiated with equation (0.1) in E possesses a uniformly attratingset bounded in E1, see [4℄ for details. In partiular, this implies (see [2℄ and [4℄)the existene of a global (uniform) attrator A for dynamial proess (0.5) and itsboundedness in more regular spae E1 = (H2(
) \H10 (
))�H10 (
).In ontrast to that, in the ase of the ritial ubi growth rate, the analoguesof the above results were obtained in the autonomous ase (g(t) � g0 2 L2(
))only (see [2℄ and [8℄) and their proof essentially used the �niteness of the so-alleddissipation integral(0.8) Z 1� k�tu(s)k2L2 ds <1whih is usually in�nite in the nonautonomous ase (see also [12℄ where equationsof the view (0.1) whose dissipation integral is in�nite, but the rate of its divergeneis, in a sense, small were onsidered).In the present paper, we generalize the method of [2℄ using instead of the dis-sipation integral the speial approximations of the solution u(t) by the pieewiseontinuous regular funtions (see Proposition 1.4) and, thus, we extend the resultsmentioned above to the nonautonomous ase. To be more preise, the main resultof the paper is the following theorem.Theorem 0.1. Let assumptions (0.2){(0.4) hold. Then,1) For every � 2 [0; 1℄, equation (0.1) generates a dissipative dynamial proessU(t; �) in the phase spae E�, i.e., for every solution u(t) of this equation satisfyingthe assumption �u(�) 2 E�, the following estimate hold:(0.9) k�u(t)kE� � Q(k�u(�)kE�)e��(t��) + C;2



where the positive onstants � and C and the monotonely inreasing funtion Qdepend on �, but are independent of t, � and �u(�).2) The R-ball BR of the spae E1 entered at 0 is a uniform exponentially at-trating set for dynamial proess (0.5) in the phase spae E if R is large enough,i.e. there exist a positive onstant � and a monotone inreasing funtion Q suhthat, for every � 2 R and t � 0 and every bounded set B in E, we have(0.10) distE (U(t+ �; �)B; BR ) � Q(kBkE)e��t;where distV (X;Y ) denotes the non-symmetri Hausdor� distane between the sub-sets X and Y of the spae V .In partiular, Theorem 0.1 implies that the global/uniform attrator A of prob-lem (0.1) is bounded in E1. Moreover, estimate (0.10) an be applied in order toonstrut the exponential attrator M for this problem whih will be bounded inE1 (see e.g., [5℄).We emphasize one more that, in ontrast to the previous papers, our methoduses neither the Lyapunov funtion nor the dissipation integral and, thus, an beextended to the lass of nongradient damped hyperboli systems, more generallasses of the nonlinearities (e.g., depending expliitly on t) and even to the lass ofdamped hyperboli equations in unbounded domains (where the dissipation integralis also usually in�nite, see e.g. [7℄ and [11℄). We return to these problems somewhereelse.The paper is organized as follows. The proof of Theorem 0.1 is given in Setion1 and some auxiliary results whih are neessary for that proof are onsidered inAppendix.Aknowledgments. This researh is partially supported by INTAS grant no. 00-899 and CRDF grant no. 2343.x1 Proof of Theorem 0.1.We divide the proof of this theorem on several steps.Step 1. Dissipativity in E. At this step, extending the arguments of [1℄ and [6℄to the nonautonomous ase, we verify that equation (0.1) generates a dissipativeproess in the energy phase spae E.Proposition 1.1. Let the assumptions of Theorem 0.1 hold. Then, for every � 2 Rand �� 2 E, problem (0.1) possesses a unique solution �u 2 C([�;+1); E) and(1.1) k�u(t)kE � Q(k��kE); t � �;where the monotoni funtion Q is independent of t and � . Moreover, the dynamialproess U(t; �) : E ! E assoiated with this equation possesses a uniform boundedabsorbing set B � E, i.e., for every bounded set B � E there exists a time T = T (B)suh that(1.2) U(t+ �; �)B � B ; 8t � T; � 2 R:Proof. The existene and uniqueness of the energy solution �u(t) of equation (0.1)is well-known, so we omit its proof here and only give the formal derivation of3



assertions (1.1) and (1.2) whih an be justi�ed in a standard way using the Galerkinapproximations, see [2℄ and [9℄ for the details. To this end, we multiply equation(0.1) by 2(�tu+�u), where � > 0 is a suÆiently small positive number whih willbe spei�ed below, and integrate over 
. Then, we have(1.3) ddtE(�u(t)) + 2( � �)k�tu(t)k2L2 + 2�krxu(t)k2L2 + 2�(f(u(t)); u(t)) == 2(g(t); �tu(t) + �u(t));where (u; v) denotes the standard inner produt in L2(
),(1.4) E((u; v)) := kvk2L2 + krxuk2L2 + �kuk2L2 + 2�(u; v) + 2(F (u); 1)and F (u) := R u0 f(v) dv. Moreover, the dissipativity assumption (0.3) implies that,for every " > 0,(1.5) 1: f(u) � u � �(�1 � ")juj2 � C"; 2: F (u) � �12(�1 � ")juj2 � C"with the appropriate onstant C". Using the seond estimate of (1.5) and theinequality krxuk2L2 � �1kuk2L2 , we dedue that, for suÆiently small � > 0(1.6) E(�u(t)) � �1k�u(t)k2E � C1;for some positive onstants �1 and C1. On the other hand, due to the growthrestrition (0.2) and the embedding H1 � L6, we have(1.7) E(�u(t)) � C(k�u(t)kE + 1)4;for some positive onstant C. Moreover, applying the �rst inequality of (1.5) toequation (1.3) and using the Cauhy-Shwartz inequality, we �nally have(1.8) ddtE(�u(t)) + Æk�u(t)k2E � k := C2(1 + kgk2L1(R;L2));for some positive onstants Æ and C2. In order to dedue the desired estimates ofk�u(t)kE from the di�erential inequality (1.8), we need the following lemma.Lemma 1.1. Let E : E ! R be a ontinuous semibounded from below funtional ona Banah spae E. Then, for every M > 0, " > 0 and every funtion �u 2 C(R+ ; E)whih satis�es (in the sense of distributions) the di�erential inequality (1.8) and theadditional assumption E(�u(0)) �M;there exists time T = T (";M) whih depends on M and ", but is independent of aonrete hoie of the funtion �u(t), suh that(1.9) E(�u(t)) � sup�E(�) : � 2 E; Æk�k2E � k + "	; 8t � T:The proof of this lemma an be found, e.g. in [3, Lemma 2.7℄.4



We are now ready to �nish the proof of Proposition 1.1. Indeed, applying Lemma1.1 (with the initial time t = � instead of t = 0) to the di�erential inequality (1.8)and using estimates (1.6) and (1.7), we obtain that the set(1.10) B := �� 2 E : E(�) � sup�E(�) : � 2 E; Æk�k2E � 2k	�is a bounded uniformly absorbing set for the proess U(t; �) assoiated with problem(0.1). Thus, (1.2) is veri�ed. Let us verify (1.1). To this end, we note that it issuÆient to verify this estimate on the �nite interval [�; �+T ℄, where T = T (k��kE)is the same as in (1.2) (sine �u(t) 2 B for t � � +T and B is bounded). Integratingnow inequality (1.8) over [�; � + t℄, t � T , we have(1.11) E(�u(t+ �)) � E(�u(�)) + kt:This estimate (together with (1.6) and (1.7)) gives the desired estimate for �u(t+�),t � T and �nishes the proof of Proposition 1.1.Corollary 1.1. Let the above assumptions hold and let u1(t) and u2(t) be twosolutions of problem (0.1). Then, the following estimate holds:(1.12) k�u1(t)� �u2 (t)kE � CeK(t��)k�u1(�) � �u2(�)kE ; t � �;where the onstants C and K depend on k�ui(�)kE , i = 1; 2, but are independentof t, � and the onrete hoie of the solutions u1 and u2.The proof of this estimate is standard and we omit it here, see e.g. [2℄ and [9℄.Assertions (1.1) and (1.2) an be reformulated in a more standard form of asingle estimate.Corollary 1.2. Let the above assumptions hold. Then, the following estimate holdfor every solution u(t) of problem (0.1):(1.13) k�u(t)kE � �Q(k�u(�)kE)e��(t��) + C;where the positive onstants C and � and the monotonely inreasing funtion �Q areindependent of t, � and �u(�).Indeed, estimate (1.13) is an obvious orollary of (1.1) and (1.2), thus we omitits proof here and only reall that the onstant � > 0 in (1.13) an be hosenarbitrarily, C an be spei�ed as the radius of the absorbing ball for the proessU(t; �) and the funtion �Q an be then omputed in terms of �, the funtion Qde�ned in (1.1) and the funtion T de�ned in (1.2).Thus, estimate (0.9) is veri�ed for � = 0 and the �rst step of the proof ofTheorem 0.1 is �nished.Remark 1.1. Dissipativity assumption (0.3) an be replaed by slightly morestrong (but, in a sense, more natural) one:(1.14) lim infjuj!1 f 0(u) > ��1:5



Indeed, on the one hand, this assumption obviously implies (0.3), but, on the otherhand, it is not diÆult to dedue from (1.14) that: for every " > 0, there exists aonstant C" suh thatF (u) � f(u) � u+ 12(�1 � ")juj2 + C"; 8u 2 R:Estimating the term (f(u); u) in (1.3) by this inequality, we dedue more simpleanalogue of the di�erential inequality (1.8):(1.15) ddtE(�u(t)) + ÆE(�u(t)) � kand �nish the proof of Proposition 1.1 in a standard way (see [2℄ and [9℄) applyingthe Gronwall's inequality to this relation (without using Lemma 1.1).It is also worth to emphasize that the funtion f whih satis�es (1.14) and (0.2)automatially satis�es the assumptions of Babin and Vishik, see [2, Setions I.8and II.6℄.Step 2. Dissipativity in E� with 0 < � < 1=2. At this step, we proveestimate (0.9) for 0 < � < 1=2 and onstrut an exponentially attrating set whihis bounded in E�. To this end, following [2℄, we split the solution u(t) of equation(0.1) as follows: u(t) = v(t) + w(t), where v(t) solves the following autonomousproblem:(1.16) �2t v + �tv ��xv + f(v) + Lv = 0; �v��t=� = �u��t=� ; t � �;where L is a suÆiently large positive number and the remainder w(t) satis�es:(1.17) �2tw + �tw ��xw + [f(v + w)� f(v)℄ = g(t) + Lv(t); �w��t=� = 0:We �rst study equation (1.16).Proposition 1.2. Let the above assumptions hold. Then, there exists a positiveonstant L suh that the solution �v(t) of (1.16) satis�es(1.18) k�v(t)kE � Q(k�u(�)kE)e��(t��);where the positive onstant � and monotonely inreasing funtion Q are independentof t, � and �u(�).Proof. We �rst note that it is suÆient to prove estimate (1.18) for � = 0 only (sineequation (1.16) is autonomous). We also note that the dissipativity assumption(0.3) and the fat that f(0) = 0 imply that(1.19) 1: f(u) � u � �Kjuj2; 2: F (u) � �K2 juj2;for some positive K. Then, multiplying equation (1.16) by �tv + �v, integratingover 
 and arguing as in derivation of (1.8) but using (1.19) instead of (1.5), weobtain that, for L > K,(1.20) ddtEL(�v(t)) + Æk�v(t)kE � 0;6



where Æ is a positive onstant and(1.21) EL((u; v)) := kvk2L2+krxuk2L2+�kuk2L2+2�(u; v)+2(F (u); 1)+Lkuk2L2:Moreover, due to estimate (1.19)(2) and the fat that L > K, we have the followingimproved analogue of (1.6):(1.22) EL(�v(t)) � �1k�v(t)k2E ;for some positive �1. Thus, applying Lemma 1.1 to the di�erential inequality (1.20)and using (1.7) and (1.22), we verify that, for every bounded subset B � E,(1.23) limt!1 supfk�v(t)kE : �v(0) 2 Bg = 0and, onsequently, every trajetory of equation (1.16) onverges (uniformly withrespet to the initial data belonging to bounded subsets) to the equilibrium u � 0of this equation. There remains to note that this equilibrium is loally exponentiallystable (sine L > f 0(0), see e.g. [2℄) and, therefore, the rate of onvergene in (1.23)is, in a fat, exponential (i.e., (1.18) holds) and Proposition 1.2 is proven.We now study equation (1.17).Proposition 1.3. Let the above assumptions hold. Then, for every bounded subsetB � E and every 0 < � < 1=2, there exist positive onstants C and K (dependingonly on B and �) suh that, for every � 2 R and every �u(�) 2 B, the followingestimate is valid:(1.24) k�w(t)kE� � CeK(t��); t � �:Proof. Di�erentiating equation (1.17) and setting �(t) := �tw(t), we have(1.25) �2t � + �t� ��x� = �[f 0(v + w) � f 0(v)℄�tu� f 0(v)� + g0(t) + L�tv(t):Moreover, expressing the seond derivative of w(t) from equation (1.17) and takinginto aount that �w(0) = 0 and growth restrition (0.2), we have(1.26) �(�) = 0; �t�(�) = �f(u(�))+ g(�)+Lu(�); k�t�(�)kL2 � Q1(k�u(�)kE);for some monotonely inreasing funtion Q1.Let us now �x 0 < � < 1=2, multiply equation (1.25) by (��x)��1(�t� + ��)(where � > 0 is small enough) and integrate over 
. Then, after the standardtransformations, we have(1.27) 12 ddt ~E(��(t)) + Æ ~E(��(t)) �� �([f 0(v + w)� f 0(v)℄�tu; (��x)��1(�t� + ��))�� ([f 0(v)� f 0(0)℄�; (��x)��1(�t� + ��))++ (g0(t) +L�tv(t)� f 0(0)(�tu(t)� �tv(t)); (��x)��1(�t�+ ��)) := I1 + I2 + I3;where(1.28) ~E(��(t)) := k��(t)k2E��1 + �k�(t)k2H��1 + 2�(�(t); �t�(t))H��1and � > 0 is small enough. Thus, we need to estimate the integrals I1, I2 and I3.We �rst note that, due to (0.4), (1.1) and (1.18), the integral I3 an be estimatedas follows(1.29) I3 � C" + "k��(t)k2E��1 � C" + 2" ~E(��(t));where " > 0 is arbitrary and C" depends on " and on the bounded subset B � E.In order to estimate the integrals I1 and I2, we need the following lemma.7



Lemma 1.2. Let 0 � � < 1=2. Then(1.30) � 1: ku1 � (��x)��1u2kL3 � Cku1kH1+�ku2kH��1 ;2: ku3 � (��x)��1u2kL3=2 � Cku3kH�ku2kH��1 ;for all u1 2 H�+1, u2 2 H��1 and u3 2 H� and for some onstant C whih dependson �, but is independent of u1, u2 and u3.The proof of Lemma 1.2 is given in Appendix.Let us now estimate the integral I1. To this end, we �rst note that the growthrestrition (0.2) implies the following estimate(1.31) jf 0(v + w)� f(v)j � Cjwj � (jvj+ jv + wj); 8v; w 2 R;where the onstant C is independent of v and w. Moreover, expressing the term�xw from equation (1.17) and taking the H��1-norm from the both sides of theequation obtained, we have(1.32) kw(t)kH�+1 � k�2tw(t)kH��1 + k�tw(t)kL2 + kf(u(t))kL2++ kf(v(t))kL2 + kg(t)kL2 + Lkv(t)kL2 � k�t�(t)kH��1 + C1;where the onstant C1 depends on the bounded subset B, but is independent of tand � (here we have impliitly used estimates (1.1) and (1.18) and the embeddingH1 � L6). Applying H�older inequality with exponents 6, 3 and 2 to the integral I2and using inequalities (1.31) and (1.32) and the �rst inequality of (1.30), we obtain(1.33) I1 � C(ku(t)kL6 + kv(t)kL6) � k�tu(t)kL2 kw � (��x)��1(�t� + ��)kL3� C1k�tu(t)kL2kw(t)kH�+1k�t�(t) + ��(t)kH��1 �� C2k�tu(t)kL2k��(t)k2E��1 + C3 � C"k�tu(t)k2L2 ~E(��(t)) + " ~E(��(t)) + C3;where " is an arbitrary positive onstant and the onstants C", C and Ci dependon the bounded subset B � E.Finally, applying H�older inequality with the exponents 3 and 3=2 to the integralI2 and using the seond estimate of (1.30), we have(1.34) I2 � kf 0(v(t)) � f 0(0)kL3k� � (��x)��1(�t�(t) + ��(t)kL3=2 �� C1kf 0(v(t)) � f 0(0)kL3k�(t)kH�k�t�(t) + ��(t)kH��1 �� C2kf(v(t))� f 0(0)kL3k��(t)k2E��1 � 2C2kf 0(v(t)) � f 0(0)kL3 ~E(��(t));where the onstants Ci depend on the bounded subset B � E. Inserting estimates,(1.29), (1.33) and (1.34) into the right-hand side of (1.27) and �xing " > 0 smallenough, we dedue that(1.35) ddt ~E(��(t)) + [Æ � C(k�tu(t)k2L2 + kf 0(v(t)) � f 0(0)kL3)℄ ~E(��(t)) �M;for some positive onstants C and M depending on the bounded set B of theinitial data allowed, but are independent of t and � . Moreover, due to the growthrestrition (0.2), the embedding H1 � L6 and estimate (1.18), we have(1.36) kf 0(v(t)) � f 0(0)kL3 � Ckv(t)kH1 (1 + kv(t)kH1) � Q(k�u(�)kE)e��(t��);8



where the positive onstant � and the monotonely inreasing funtion Q are inde-pendent of t, � and �u(�).Applying �nally the Gronwall's inequality to (1.35) and using (1.1) in order toestimate the L2-norm of �tu, we infer(1.37) k��(t)k2E��1 � 2 ~E(��(t)) �M 0 + 2~E(��(�))e2K(t��);for some positive onstants M 0 and K depending only on B. Estimate (1.37),together with (1.26) and (1.32) imply (1.24) and �nish the proof of Proposition 1.3.Corollary 1.3. Let the above assumptions hold and let, in addition, �u(�) 2 E�,for some 0 � � < 1=2. Then, the following estimate holds:(1.38) k�u(t)kE� � CeK(t��);where the positive onstants C and K depend on k�u(�)kE� , but are independent oft and � .The proof of estimate (1.38) is analogous to the proof of Proposition 1.3, butessentially more simple, sine now the initial data belong to E� from the verybeginning and we need not now to split the solution u(t) by (1.16) and (1.17) andan diretly di�erentiate equation (0.1) by t and set �(t) = �tu(t). Then, we obtainequation (1.25) (with L = 0 and v(t) � 0), but with di�erent initial data:�(�) = �tu(�); �t�(�) = �xu(�)� �tu(�)� f(u(�)) + g(�):Thus, it is not diÆult to show, analogously to (1.26) and (1.32), that(1.39) k��(�)kE��1 � Q(k�u(�)kE�);for some monotone inreasing funtion Q. Estimate (1.38) is now an immediateorollary of (1.37), (1.39) and (1.32) and Corollary 1.3 is proven.Remark 1.2. It is worth to note that the estimate for the E�-norm of �w(t)obtained in Proposition 1.3 diverges exponentially as t ! +1. In ontrast tothat, in the autonomous ase, di�erential inequality (1.35) allows to obtain non-divergent estimate for the �w(t) whih, in a fat, �nishes the proof of Theorem 0.1for 0 � � < 1=2. Indeed, it follows from (1.36) that(1.40) Z 1� kf(v(t))� f 0(0)kL3 dt � C <1:Moreover, in the autonomous ase we also have the dissipation integral (0.8), onse-quently, the Gronwall's inequality applied to (1.35) gives the non-divergent estimate(1.41) ~E(��(t)) � C ~E(��(�))e��t +M 0;for some positive onstants C, M 0 and �. Unfortunately, the dissipation integral(0.8) usually equals in�nity in the nonautonomous ase, thus, the sheme of [2℄(desribed above) now gives the exponentially divergent estimates only whih isobviously not enough for proving Theorem 0.1.The following proposition, whih gives a splitting of the funtion �tu(t) in a sumof two funtions one of whih is regular and the other is, in a sense, small, is aruial point of our method. 9



Proposition 1.4. Let the above assumptions hold. Then, for every � > 0, 0 �� < 1=2 and every bounded subset B � E, there exist positive onstants C� andK� suh that, for every solution u(t) of problem (0.1) satisfying �u(�) 2 B, thereexists a splitting(1.42) �tu(t) = v1(t) + w1(t); t � �suh that(1.43) kw1(t)kH�+1 � K�and, for every t � s � � ,(1.44) Z ts kv1(�)k2L2 d� � �(t� s) + C�:Proof. In order to onstrut the funtions v1 and w1, we �x a large T > 0 and, atevery interval [� + (n� 1)T; � + nT ℄, we setv1(t) := �tv(t); w1(t) := �tw(t);where the funtions v(t) and w(t) solve equations (1.16) and (1.17) respetively atthe interval [� + (n� 1)T; � + nT ℄, n 2 N, with the following initial data:(1.45) �v(� + (n� 1)T ) := �u(� + (n� 1)T ); �w(� + (n� 1)T ) = 0:Then, aording to estimate (1.18), we have(1.46) Z �+nT�+(n�1)T kv1(�)k2L2 d� � C;where the onstant C = C(B) is independent of � , n and T . Thus, for every � > 0,we an �nd a suÆiently large T = T (�;B) suh that (1.44) is satis�ed. After �xingthe length T , estimate (1.24) implies (1.43) for some K� = K(B; T ) and �nishesthe proof of Proposition 1.4.Our next task is to obtain the non-divergent analogue of estimate (1.24) usingsplitting (1.42) instead of the dissipation integral.Proposition 1.5. Let the above assumptions hold. Then, the solution �w(t) ofequation (1.17) possesses the following estimate:(1.47) k�w(t)kE� � Q�(k�u(�)kE); t � �;where the monotonely inreasing funtion Q� depends on 0 � � < 1=2, but isindependent of t and � .Proof. Analyzing the proof of Proposition 1.3, we see that the exponential diver-gene in (1.24) appears due to the term k�tu(t)k2L2 in di�erential inequality (1.35)whih, in turns, appears under the estimating of the integral I1 by (1.33). Thus, our10



task is to improve estimate (1.33) using splitting (1.42). To this end, we transformthis integral as follows:(1.48) I1 = �([f 0(v + w) � f 0(v)℄v1; (��x)��1(�t� + ��))�� ([f 0(v + w) � f 0(v)℄w1; (��x)��1(�t� + ��)) := I11 + I21 ;where the funtions v1 and w2 are the same as in Proposition 1.4 (with a suÆientlysmall parameter � whih will be �xed below). Then, arguing exatly as in (1.33),we have(1.49) I11 � C"kv1(t)k2L2 ~E(��(t)) + " ~E(��(t)) + C;where the onstant " > 0 an be hosen arbitrarily. Applying now H�older inequalitywith the exponents 3 and 3=2 to the integral I21 and using the seond estimate of(1.30) and estimate (1.43), we infer(1.50) I21 � (kf 0(u(t))kL3 + kf 0(v(t))kL3)kw1(t) � (��x)��1(�t�(t) + ��(t))kL3=2� C1kw1(t)kH�k�t�(t) + ��(t)kH��1 � C2k��(t)kE� � " ~E(��(t)) + C";where the onstant " > 0 an be hosen arbitrarily and the onstant C" dependson k�u(�)kE , but is independent of t and � .Using now estimates (1.49) and (1.50) instead of (1.33), we an improve di�er-ential inequality (1.35) as follows:(1.51) ddt ~E(��(t)) + h(t) ~E(��(t)) �M;where h(t) := Æ � C(kv1(t)k2L2 + kf 0(v(t))� f 0(0)kL3);and the positive onstants Æ, C andM are independent of t and � . Moreover, �xing� := Æ=(2C) in (1.44) and using (1.40), we have(1.52) Z ts h(�) d� � 12Æ(t� s)� �C; t � s � �;where the onstant �C depends on k�u(�)kE , but is independent of t, s and � .Applying the Gronwall's inequality to (1.51) and using (1.52), we infer the followingimproved version of (1.37):(1.53) k��(t)k2E��1 � 2 ~E(��(t)) �M 0 + 2~E(��(�))e �C�Æ(t��)=2:Estimate (1.53), together with (1.26) and (1.32) imply (1.47) and �nish the proofof Proposition 1.5.Corollary 1.4. Let the above assumptions hold. Then, for every 0 � � < 1=2,there exist positive onstants R� and � and a monotonely inreasing funtion Qsuh that, for every bounded subset B of E, we have(1.54) distE �U(t; �)B;�� 2 E� : k�kE� � R�	� � Q(kBkE)e��(t��);for all � 2 R and t � � .Indeed, due to Proposition 1.1, it is suÆient to verify (1.54) for the absorbingset B only. But, in this ase, estimate (1.54) is an immediate orollary of (1.18)and (1.47) (we an set R� := Q�(kBkE ), where Q� is the same as in (1.47)).11



Corollary 1.5. Let the above assumptions hold and let, in addition, �u(�) 2 E�,for some 0 � � < 1=2. Then, the following estimate is valid:(1.55) k�u(t)kE� � Q�(k�u(�)kE�)e��(t��) + C�;where the positive onstants � and C� and the monotonely inreasing funtion Q�are independent of t, � and �u(�).Indeed, due to Proposition 1.1 and Corollary 1.3, it is suÆient to verify (1.55),for the initial data belonging to the absorbing set B only. In this ase, estimate(1.55) an be veri�ed analogously to the proof of Corollary 1.3, but using morestrong estimate (1.53) instead of (1.37).Thus, the seond step of the proof of Theorem 0.1 is also �nished.Step 3. The ase 1=2 � � � 1. At this step, we verify the dissipativity of thedynamial proess U(t; �) in the spaes E�, 1=2 � � � 1 and, thus, �nish the proofof Theorem 0.1. To this end, it is onvenient to use more simple (than (1.16) and(1.17)) splitting of the solution u(t) where the �rst equation is linear, namely, weset u(t) := v(t) + w(t), where the funtion v(t) solves(1.56) �2t v + �tv ��xv = 0; �v��t=� = �u��t=�and the remainder w(t) satis�es(1.57) �2tw + �tw ��xw = hu(t) := g(t)� f(u(t)); �w��t=� = 0:Then, applying the E�-regularity estimate for the damped linear equation (1.56)(see e.g., [9℄), we infer that, for every 0 � � � 1,(1.58) k�v(t)kE� � Ck�u(�)kE�e��(t��); t � �;where the positive onstants C and � are independent of t, � and �u(�) 2 E�.Thus, it only remains to study equation (1.57).Proposition 1.6. Let the above assumptions hold and let, in addition, �u(�) 2E1=3. Then, the solution w(t) of equation (1.57) satis�es the following estimate:(1.59) k�w(t)kE1 � Q(k�u(�)kE1=3)e��(t��) + C�; t � �;where the positive onstants � and C� and the monotonely inreasing funtion Qare independent of t, � and �u(�) 2 E1=3.Proof. Aording to the E1-regularity theorem for damped linear wave equations(see e.g., [9℄), it is suÆient to verify the following estimate:(1.60) khu(t)kL2 + k�thu(t)kL2 � Q(k�u(�)kE�)e��(t��) + C�:Moreover, due to assumptions (0.2) and (0.4) and estimate (1.13), it is only suÆientto verify that(1.61) kf 0(u(t))�tu(t)kL2 � Q(k�u(�)kE�)e��(t��) + C�:In order to verify this estimate, we need to use the fat that �u(�) 2 E1=3 andestimate (1.55) with � = 1=3. Indeed, due to this estimate and embeddingsH1=3 � L18=7 and H4=3 � L18, we have the desired estimates for the ku(t)kL18and k�tu(t)kL18=7 . Moreover, sine, due to the growth restrition (0.2), the fun-tion f 0(u) has a quadrati growth rate, then we also have the desired estimate forkf 0(u(t))kL9 . Sine 19 + 718 = 12 , then the H�older inequality gives (1.61) and �nishesthe proof of Proposition 1.6.We are now ready to �nish the proof of the �rst part of Theorem 0.1.12



Corollary 1.6. Let the above assumptions hold. Then, for every 1=3 � � � 1, thesolution u(t) of problem (0.1) satis�es the following estimate:(1.62) k�u(t)kE� � Q(k�u(�)kE�)e��(t��) + C�; t � �;where the positive onstants � and C� and the monotonely inreasing funtion Qare independent of t, � and �u(�) 2 E�.Indeed, (1.62) is an immediate orollary of (1.58) and (1.55).Combining Corollaries 1.5 and 1.6, we obtain estimate (0.9) for any 0 � � � 1and �nish the proof of the �rst part of Theorem 0.1.Corollary 1.7. Let the above assumptions hold. Then, there exist positive on-stants R and � and a monotonely inreasing funtion Q suh that, for every boundedsubset B � E1=3, we have(1.63) distE1=3 �U(t; �)B;�� 2 E1 : k�kE1 � R	� � Q(kBkE1=3)e��(t��);for all � 2 R and t � � .Indeed, estimate (1.63) is also an immediate orollary of (1.58) and (1.55).In order to verify estimate (0.10), we use the following general fat on the tran-sitivity of an exponential attration established in [5℄.Lemma 1.3. Let (M; d) be an abstrat metri spae and let U(t; �) be a Lipshitzontinuous dynamial proess in M, i.e(1.64) d(U(t+ �; �)m1; U(t+ �; �)m2) � CeKtd(m1;m2);for appropriate onstants C and K whih are independent of mi, � and t. Wefurther assume that there exist three subsets M1;M2;M3 �M suh that(1.65) � distM (U(t+ �; �)M1;M2) � C1e��1t;distM (U(t+ �; �)M2;M3) � C2e��2t:Then(1.66) distM (U(t+ �; �)M1;M3) � C 0e��0t;where C 0 = CC1 + C2, �0 = �1�2K+�1+�2 .The proof of Lemma 1.3 is given in [5℄ (in the autonomous ase). Nevertheless,for the onveniene of the reader, we reall it in Appendix.We are now ready to verify (0.10). Indeed, aording to Proposition 1.1, itis suÆient to verify this estimate for the absorbing set B only (we set M1 :=B ). Then, due to Corollary 1.4, the set M1 is attrated exponentially to theball M2 of radius R1=3 of the spae E1=3. Moreover, due to Corollary 1.7, theball M2 is attrated exponentially to the ball M3 of radius R of the spae E1(even in a more strong topology of E1=3). The uniform Lipshitz ontinuity of theproess U(t; �) (on bounded subsets of E) is given by Corollary 1.1. Thus, estimate(0.10) now follows from the transitivity of exponential attration (Lemma 1.2) and,onsequently, Theorem 0.1 is proven. 13



Appendix. Proofs of the auxiliary lemmata.In this Appendix we give the proofs of Lemmata 1.2 and 1.3.Proof of Lemma 1.2. Let us verify the �rst estimate of (1.30). Indeed, aordingto the embedding theorem, we have(A.1) ku1kLp1 � Cku1kH�+1 ; where 0 � � < 1=2 and 1p1 = 12 � 1 + �3 :On the other hand, aording to the regularity theorem for the frational powersof the Laplaian (see e.g. [10℄), we have(A.2) k(��x)��1u2kH1�� � C1ku2kH��1 :Applying again the embedding theorem, we infer(A.3) k(��x)��1u2kLp2 � C2k(��x)��1u2kH1�� � C3ku2kH��1 ;where 1p2 = 12 � 1��3 . Sine1p1 + 1p2 = 12 � 1 + �3 + 12 � 1� �3 = 13 ;then, due to H�older inequality, inequalities (A.1) and (A.3) imply the �rst estimateof (1.30).Let us now verify the seond inequality of (1.30). Indeed, aording to theembedding theorem(A.4) ku3kLp3 � C4ku3kH� ; where 1p3 = 12 � �3 :Sine 1p3 + 1p2 = 12 � �3 + 12 � 1��3 = 23 , then (due to H�older inequality) estimates(A.3) and (A.4) imply the seond estimate of (1.30) and �nish the proof of Lemma1.2.Proof of Lemma 1.3. Let � 2 R be �xed, m1 belong toM1 and let us set t = t1+t2,where ti � 0, i = 1; 2, will be �xed below. Then, owing to the �rst estimate of(1.65), there exists m2 2M2 suh that(A.5) d(U(t1 + �; �)m1;m2) � C1e��1t1 :Then, estimate (1.64) (and the identity U(t; �) = U(t; s) Æ U(s; �) for t � s � �)implies that(A.6) d(U(t+ �; �)m1; U(t+ �; t1 + �)m2) � CC1eKt2��1t1 :On the other hand, using the seond estimate of (1.65), we dedue that there existsm3 2M3 suh that(A.7) d(U(t+ �; t1 + �)m2;m3) � C2e��2t2 :Combining (A.5){(A.7) and noting that m1 2 M1 and t1 2 [0; t℄ is arbitrary, weobtain(A.8) distM (U(t+ �; �)M1;M3) � inft1+t2=t �CC1eKt2��1t1 + C2e��2t2� :Fixing the values ti in an optimal way (i.e. suh that Kt1��1t2 = �2t2), we obtain(1.66). Lemma 1.3 is proven. 14
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