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IntrodutionIn this paper the following quasilinear paraboli boundary problem(0.1) � �tu = a�xu� �0u� f(u) + g; x 2 
u���
 = 0; u��t=0 = u0in the unbounded domain 
 (whih is assumed to satisfy some natural regularityonditions formulated in x1) is onsidered. Here u = (u1; � � � ; uk) is an unknownvetor-valued funtion, f and g are given funtions, �0 > 0 is a positive onstantand a is a given k � k-matrix with a positive symmetri part:(0.2) a+ a� > 0The longtime behavior of solutions of (0.1) is of a great interest now. It is well knownthat under the appropriate assumptions on the nonlinear term f(u) this behavioran be desribed in terms of an attrator A of the orresponding dynamial systemgenerated by (0.1) (see e.g. [4℄, [5℄, [25℄, [29℄). One of the possible hoies of theseassumptions is the following one:(0.3) 8><>: 1: f 2 C2(Rk ;Rk )2: f(u):u � �C3: f 0(u) � �Kwhere u:v means the standard inner produt in Rk (see e.g. [4℄, [16℄, and [19℄for the other possibilities). Note that (0.3) is ful�lled for many interesting fromthe physial point of view equations suh as Chafee-Infante equation, Fitz-Nagumosystem, generalized Ginzburg-Landau equations and other ones.In the ase where the domain 
 is bounded the global attrators for (0.1) havebeen onstruted and studied under the various assumptions on f , a and g (see [4℄,[20℄, [29℄ and referenes therein). Partiularly, the attrator's existene for (0.1)under the assumptions (0.2) and (0.3) has been proved in [34℄. It is also provedthere that if the nonlinearity f satis�es the additional growth restrition(0.4) jf(u)j � C(1 + jujp); p < 1 + 4=(n� 4)(for n � 4 the exponent p may be arbitrarily large) then the orresponding semi-group is di�erentiable with respet to the initial value u0, possesses the L1-boundsand the fratal dimension it's attrator is �nite.In the ase where the domain 
 is unbounded (e.g. 
 = Rn ) the situationbeomes muh more ompliated. In this ase even the hoie of the appropriatephase spae for (0.1) is a nontrivial problem. Indeed, the phase spae L2(
) (asin the ase of bounded domains) seems to be not adequate beause a number ofnatural from the physial point of view strutures suh as e.g. spatially periodisolutions, travelling waves, et. are ourred to be out of the onsideration. As aresult the global attrator in L2(
) exists for (0.1) only for very partiular ases(see e.g. [5℄, [7℄, [14℄, [24℄). That is why, following to [18℄, [28℄, [33℄, we will onsiderthe equation (0.1) in the spaes(0.5) W l;pb (
) := fu0 2 D0(
) : ku0kW l;pb := supx02
 ku0kW l;p(
\B1x0 ) <1g2



with the appropriate hoie of exponents l and p (here and below BRx0 means theR-ball in Rn entered in x0 and W l;p(V ) is a Sobolev spae of funtions whosederivatives up to the order l belong to Lp(V )). Roughly speaking the spaes (0.5)onsist of suÆiently regular funtions u0(x) whih remain bounded when jxj ! 1and ontain all strutures mentioned above.To the best of our knowledge the existene of the global attrator for (0.1) forthe unbounded domain 
 = Rn has been �rstly established in [1℄ and [5℄ (for asalar ase k = 1 and under the great growth restritions p < minf4=n; 2=(n�2)g).These growth restritions have been removed later in [17℄ and [24℄. The ase ofsystems (k � 2) with a salar di�usion matrix a has been onsidered in [7℄, [14℄,[15℄, [32℄. Mention also that for the partiular ases of (0.1) e.g. for omplexGinzburg-Landau equations more powerful results have been obtained (see [25℄ andreferenes therein).In the present paper ombining the methods of [33℄ and [34℄ we establish theexistene of the global attrator for (0.1) under the assumptions (0.2) (whih ismuh more natural from the reation-di�usion point of view) and (0.3)-(0.4).Theorem 1. Let the assumptions (0.2){(0.4) hold and let g 2 Lqb(
) for a someq � 2 suh that q > n=2. Then for every u0 2 �b(
) :=W 2;qb (
)\ fu0���
 = 0g theproblem (0.1) possesses a unique solution u(t) 2 �b(
) for t � 0 whih satis�es thefollowing estimate: ku(t)k�b � Q(ku0k�b)e��t +Q(kgkLqb)where � > 0 is a positive onstant and Q is an appropriate monotoni funtionwhih are independent of u0, and onsequently the solving semigroup(0.6) St : �b(
)! �b(
); t � 0 Stu0 := u(t)is well de�ned for the problem (0.1).Moreover, this semigroup possesses a bounded in �b(
) and loally ompat (=ompat in a loal topology of �lo(
) :=W 2;qlo (
)) attrator A.Note that under the assumptions of Theorem 1 the Hausdor� and fratal di-mension of the attrator may be in�nite (and is ourred to be in�nite in manyinteresting partiular ases) (see e.g. [5℄, [32℄ or Th. 3 below) and onsequentlythere is a problem of �nding new quantitative harateristi of the attrator adoptedto the in�nite dimensional ase. One of possible approahes to handle this problemwhih is suggested in [8℄ is to onsider and estimate the Kolmogorov's "-entropy ofthe in�nite dimensional attrator A.Reall, that if K is a preompat set in a metri spae M then it an be ov-ered (due to the Hausdor� riteria) by a �nite number of "-balls for every " > 0.Let N"(K;M) be the minimal number of suh balls. Then by de�nition the Kol-mogorov's "-entropy of K in M is the following number:(0.7) H " (K;M) := lnN"(K;M)It is worth to emphasize that in ontrast to the fratal dimension the quantity (0.7)remains �nite for every " > 0 and every preompat set K in M .The "-entropy of the in�nite dimensional uniform attrators for (0.1) in the asewhere the domain 
 is bounded and the external fore g depends expliitly on t3



has been studied in [8℄. The ase of autonomous reation-di�usion equations in Rnhas been onsidered in [10℄ and [32℄. The entropy for the autonomous and nonau-tonomous RDE in general ase of the unbounded domain 
 has been onsideredin [15℄ and [33℄. The entropy for damped hyperboli equations in the unboundeddomain has been investigated in [35℄ and [36℄.It is partiularly proved in [33℄ that in the ase where the di�usion matrix a issalar the entropy of restritions A��
\BRx0 possesses the estimate(0.8) H " (A��
\BRx0 ;�b) � C vol(
 \ BR+K ln 1="x0 ) ln 1" ; " � "0 < 1where the onstants C, K and "0 are independent of ", R, and x0.In the present paper we extend this estimate to the ase of general di�usionmatriies a satisfying (0.2).Theorem 2. Let the assumptions of Theorem 1 hold. Then the entropy of theattrator A of (0.1) possesses the estimate (0.8).Moreover, in the ase where 
 = Rn and g � onst we obtain the lower boundsfor the entropy of restritions A��BRx0 under the natural assumption that (0.1) pos-sesses at least one spatially homogeneous exponentially unstable equilibria point.Without loss of generality one may assume that u � 0 is a suh equilibria andonsequently (0.1) has the following view:(0.9) �tu = a�xu+Bu� �(u); �(0) = �0(0) = 0where the matrix B := �f 0(0)� �0.Theorem 3. Let the assumptions of Theorem 1 hold and let 
 = Rn and (0.1) hasthe form (0.9). Assume also that(0.10) �(a�x +B) \ fz 2 C : Re z > 0g 6= ?Then the entropy of the attrator possesses the following estimates:(0.11) H " (A��BRx0 ;�b) � C1Rn ln 1" ; C1 > 0; " � "0 < 1Moreover, for every � > 0 there is a onstant C� > 0 suh that(0.12) H " (A��B1x0 ;�b) � C� �ln 1"�n+1��Note that for the partiular ase 
 = Rn (0.8) reads(0.13) H " (A��BRx0 ;�b) � C2�R+K ln 1"�n ln 1"Therefore, Theorem 3 shows that the estimate (0.8) is sharp at least in the ase
 = Rn . From the other side in the ase where the domain 
 is bounded theestimate (0.8) yields H " (A;�) � C vol(
) ln 1"4



whih reets the well-known heuristi priniple that the equations of mathemat-ial physis in bounded domains have the �nite fratal dimension (and moreoverindiates in a right way the dependene of this dimension on the 'size' of 
). Thus,the estimate (0.8) may be onsidered as a natural generalization of this prinipleto the ase of unbounded domains (see also [15℄ or [36℄).The rest part of the paper is devoted to a more omprehensive study of thespatially homogeneous ase of the equation (0.1) (
 = Rn , g � onst). In thisase the attrator A possesses an additional struture, namely, it is ourred to beinvariant under the group fTh; h 2 Rng of spatial shifts:(0.14) Th : A ! A; ThA = A; h 2 Rn ; (Thu0)(x) := u0(x+ h)This semigroup an be treated as a dynamial system (with multidimensional 'time'if n > 1) ating in the phase spae A. Thus, in order to study the spatial omplexity(and spatial haotisity) of A one may investigate the dynamial properties of thesystem (0.14).The phenomena of spatial omplexity and spatial haotisity has been studied e.g.in [2℄, [6℄, [12℄ for a various partiular ases of the equation (0.1). In partiular,the examples whih show that the topologial entropy of the dynamial system(0.14) may be positive (and, moreover, that this dynamial system may ontainthe symboli dynamis) has been onstruted there. In the present paper we provethat under the natural assumptions the topologial entropy of the dynamial system(0.14) is in�nite.Theorem 4. Let the assumptions of Theorem 3 hold. Then the spatial dynamialsystem (0.14) has the in�nite topologial entropy: hsp(A) =1.Moreover, we introdue (in Setion 7) a new quantitative harateristi of thedynamis { the modi�ed topologial entropy bhsp, whih ourred to be �nite andpositive for the ase of (0.14): 0 < bhsp(A) <1.Thus, the dynamial behavior of (0.14) is ourred to be extremely haoti. Notealso that in ontrast to the ase of dynamial haos, generated by ODE or by PDEin bounded domains the symboli dynamis (Bernulli shifts, see e.g. [21℄) is notan adequate model example for understanding the nature of the spatial haotisityin (0.14) beause the topologial entropy of symboli dynamis is �nite. In orderto overome this diÆulty a new model dynamial system whih generalizes theBernulli shifts and adopted to the ase of in�nite topologial entropy is suggested.Namely, let D be a unitary dis in C and letM := DZn endowed by the Tikhonov'stopology. A disrete dynamial system Th (with multidimensional 'time' h 2 Zn)on M an be de�ned in a natural way:(0.15) Thv(l) := v(h+ l); h; l 2 Zn; v 2 M(Reall that as usual M is interpreted as a spae of funtions v : Zn! D ).The main result of the paper is the following theorem.Theorem 5. Let the assumptions of Theorem 3 hold. Then there is a positivenumber � > 0, the losed subset K � A and a homeomorphism � : M ! K suhthat(0.16) T�hK = K and T�h�(v) = �(Thv); 8h 2 Zn; v 2M5



Moreover, this homeomorphism is ourred to be Lipshitz ontinuous under theappropriate hoie of metris on A and M and preserves the modi�ed topologialentropy: 0 < bhsp(M) = bhsp(K) � bhsp(A) <1As the �rst elementary orollary of this onstrution we obtain the fat thatevery �nite dimensional dynamis an be realized (up to a homeomorphism) byrestriting the spatial dynamial system (0.14) to the appropriate losed subsetsof A.Corollary. Let n = 1 and the assumptions of Theorem 3 hold. Assume thatM � RN is an arbitrary ompat set and  : M ! M is an arbitrary homeo-morphism of it. Then there is a number �0 > 0, a set K = K (M; ) � A and ahomeomorphism � 0 :M ! K suh that(0.17) T�0hK = K ; 8h 2 Z and T�0 Æ � 0 = � 0 Æ  The result of this Corollary on�rms from the other point of view that the spatialdynamis (0.14) is an extremely haoti.Reall now that we have also the temporal evolution operator St : A ! A, t � 0generated by the equation (0.1), therefore it seems reasonable to study the temporalevolution of spatially haoti strutures in A (see also [11℄, [13℄). To this end weintrodue a notion of the spatial omplexity for the individual point u0 2 A in thefollowing natural way:(0.18) bhsp(u0) := bhsp(Hsp(u0))where Hsp(u0) := [Thu0; h 2 Rn ℄A is the losure in A of omplete orbit for u0 withrespet to the spatial shifts. Under some additional assumptions whih look notvery restritive we prove that this value preserves under the temporal evolution.Theorem 6. Let the assumptions of Theorem 3 hold and let in addition the di�u-sion matrix a is normal (aa� = a�a). Then(0.19) bhsp(Stu0) = bhsp(u0); 8u0 2 AMoreover, there are points u0 2 A suh that0 < bhsp(u0) <1Thus, Theorem 6 shows that the spatial haos preserves under the temporalevolution.We illustrate the obtained results on the example of omplex Ginzburg-Landauequation (see Example 8.1).The paper is organized as follows.The de�nitions of funtional spaes whih are of fundamental signi�ane for ourstudy the equation (0.1) and their simple properties are given in Setion 1.The various a priori estimates for the solutions of (0.1) are obtained in Setion 2.Moreover, basing on these estimate we verify the existene of a solution, it's unique-ness and derive some estimates for di�erenes of solutions whih will be essentiallyused later. 6



The existene of a global attrator A for the system (0.1) is veri�ed in Setion 3.The de�nition of Kolmogorov's "-entropy and the standard of examples whihillustrate the typial behavior of the this quantity as " ! 0 for various sets infuntional spaes are realled in Setion 4.The upper bounds of the "-entropy for the attrator A of the equation (0.1) areobtained in Setion 5.The further development of the method of in�nite dimensional unstable mani-folds for the equation (0.9) are given in Setion 6. Moreover, using this method wederive the lower bounds of the Kolmogorov's entropy of the attrator and preparea number of tehnial tools for studying the spatial omplexity of the attrator.This spatial omplexity is investigated in Setion 7 (partiularly Theorems 4 and5 are proved here). Note, that the results of this Setion are essentially based onthe results of Setions 5 and 6.The temporal evolution of the spatially haoti strutures are studied in Se-tion 8. In partiular the Holder ontinuity of the inverse operator for St restritedto the attrator whih is of independent interest is proved here.Aknowledgements. The author has greatly bene�ted from helpful omments ofM.Efendiev, H.Gaevski, A.Mielke, and M.Vishik.x1 Funtional spaesIn this Setion we introdue several lasses of Sobolev spaes in unboundeddomains and reall shortly some of their properties whih will be essentially usedbelow. For a detailed study of these spaes see [14℄, [33℄.De�nition 1.1. A funtion � 2 Clo(Rn ) is alled a weight funtion with the rateof growth � � 0 if the ondition(1.1) �(x + y) � C�e�jxj�(y); �(x) > 0is satis�ed for every x; y 2 Rn .Remark 1.1. It is not diÆult to dedue from (1.1) that(1.2) �(x+ y) � C�1� e��jxj�(y)is also satis�ed for every x; y 2 Rn .The following example of weight funtions are of fundamental signi�ane forour purposes: �";x0(x) = e�"jx�x0j; " 2 R; x0 2 Rn(Evidently this weight has the rate of growth j"j.)De�nition 1.2. Let 
 � Rn be some (unbounded) domain in Rn and let � be aweight funtion with the rate of growth �. De�ne the spaeLp�(
) = �u 2 D0(
) : ku;
; k�;0;p � Z
 �(x)ju(x)jp dx <1�Analogously the weighted Sobolev spae W l;p� (
), l 2 N is de�ned as the spae ofdistributions whose derivatives up to the order l inlusively belong to Lp�(
).7



For the simpliity of notations we will write below W s;pf"g instead of W s;pe�"jxj .We de�ne also another lass of weighted Sobolev spaesW l;pb;�(
) = �u 2 D0(
) : ku;
kpb;�;l;p = supx02
�(x0)ku;
 \ B1x0kpl;p <1�Here and below we denote by BRx0 the ball in Rn of radius R, entered in x0, andku; V kl;p means kukW l;p(V ).We will write W l;pb instead of W l;pb;1 .Proposition 1.1.1. Let u 2 Lp�(
), where � is a weight funtion with the rate of growth �. Thenfor any 1 � q � 1 the following estimate is valid:(1.3) �Z
 �(x0)q �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q � C Z
 �(x)ju(x)jp dxfor every " > �, where the onstant C depends only on ", � and C� from (1.1) (andindependent of 
).2. Let u 2 L1� (
). Then the following analogue of the estimate (1.3) is valid:(1.4) supx02
��(x0) supx2
fe�"jx�x0jju(x)jg� � C supx2
f�(x)ju(x)jgThe proof of this Proposition an be found in [14℄ or [33℄.For the more detailed study of funtional spaes de�ned above we need someregularity assumptions on the domain 
 � Rn whih are assumed to be validthroughout of the paper.We suppose that there exists a positive number R0 > 0 suh that for every pointx0 2 
 there exists a smooth domain Vx0 � 
 suh that(1.5) BR0x0 \
 � Vx0 � BR0+1x0 \
Moreover it is assumed also that there exists a di�eomorphism �x0 : B20 ! BR0+2x0suh that �x0(x) = x0 + px0(x), �x0(B10) = Vx0 and(1.6) kpx0kCN + kp�1x0 kCN � Kwhere the onstant K is assumed to be independent of x0 2 
 and N is largeenough. For simpliity we suppose below that (1.5) and (1.6) hold for R0 = 2.Note that in the ase when 
 is bounded the onditions (1.5) and (1.6) are equiv-alent to the ondition: the boundary �
 is a smooth manifold, but for unboundeddomains the only smoothness of the boundary is not suÆient to obtain the regularstruture of 
 when jxj ! 1 sine some uniform with respet to x0 2 
 smooth-ness onditions are required. It is the most onvenient for us to formulate theseonditions in the form (1.5) and (1.6). 8



Proposition 1.2. Let the domain 
 satisfy the onditions (1.5) and (1.6), theweight funtion { the ondition (1.1) and let R be a positive number. Then thefollowing estimates are valid:(1.7)C2 Z
 �(x)ju(x)jp dx � Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 � C1 Z
 �(x)ju(x)jp dxProof. The proof of this Proposition is given in [14℄ or [33℄. For the reader's on-veniene we reall shortly this proof.Let us hange the order of integration in the middle part of (1.7)(1.8) Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 = Z
 ju(x)jp �Z
 �
\BRx (x0)�(x0) dx0� dxHere �
\BRx is the harateristi funtion of the set 
 \ BRx .It follows from the inequalities (1.1) and (1.2) that(1.9) C1�(x) � infx02BRx �(x0) � supx02BRx �(x0) � C2�(x)and the assumptions (1.5) and (1.6) imply that(1.10) 0 < C1 � vol(
 \ BRx ) � C2uniformly with respet to x 2 
.The estimate (1.7) is an immediate orollary of the estimates (1.8){(1.10). Pro-position 1.2 is proved. �Corollary 1.1. Let (1.5) and (1.6) be valid. Then the equivalent norm in weightedSobolev spae W l;p� (
) is given by the following expression:(1.11) ku;
k�;l;p = �Z
 �(x0)ku;
 \BRx0kpl;p dx0�1=pPartiularly, the norms (1.11) are equivalent for di�erent R 2 R+ .To study the equation (0.1) we need also weighted Sobolev spaes with frationalderivatives s 2 R+ (not only s 2 Z). For the �rst we reall (see [30℄ for details) thatif V is a bounded domain the norm in the spae W s;p(V ), s = [s℄ + l, 0 < l < 1,[s℄ 2 Z+ an be given by the following expression(1.12) ku; V kps;p = ku; V kp[s℄;p + Xj�j=[s℄ Zx2V Zy2V jD�u(x)�D�u(y)jpjx� yjn+lp dx dyIt is not diÆult to prove arguing as in Proposition 1.2 and using this representationthat for any bounded domain V with a suÆiently smooth boundary(1.13) ku; V kps;p � C1 Zx02V ku; V \ BRx0kps;p dx0 � C2ku; V kps;pThis justi�es the following de�nition. 9



De�nition 1.3. De�ne the spae W s;p� (
) for any s 2 R+ by the norm (1.11).It is not diÆult to hek that these norms are also equivalent for di�erent R > 0.Note now that the weight funtions(1.14) �";x0(x) = e�"jx�x0jsatisfy the onditions (1.1) uniformly with respet to x0 2 Rn , onsequently allestimates obtained above for the arbitrary weights will be valid for the family (1.14)with onstants, independent of x0 2 Rn . Sine these estimates are of fundamentalsigni�ane for us we write it expliitly in a number of orollaries formulated below.Corollary 1.2. Let u 2 LpfÆg(
) for 0 < Æ < ". Then the following estimate holdsuniformly with respet to y 2 Rn(1.15) �Z
 e�qÆjx0�yj�Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q �� C";q Z
 e�Æjx�yjju(x)jp dxMoreover if u 2 L1fÆg(
), Æ < " then(1.16) supx02
�e�Æjx0�yj supx2
fe�"jx�x0jju(x)jg� � C";Æ supx2
fe�Æjx�yjju(x)jgCorollary 1.3. Let u 2 W l;pb;�(
) and � be a weight funtion with the rate of growth� < ". Then(1.17) C1ku;
kpb;�;l;p �� supx02
��(x0) Zx2
 e�"jx�x0jku;
 \ B1xkpl;p dx� � C2ku;
kpb;�;l;pFor the proof of this orollary see [33℄.We will need also the following sublass of weight funtions with the exponentialrate of growth.De�nition 1.4. A funtion � 2 Clo(Rn ) is de�ned to be a weight funtion withthe polynomial rate of growth � if the following inequality is valid for every x; y 2 Rn(1.18) �(x+ y) � C� �(1 + jy1j2)(1 + jy2j2) � � � ; (1 + jynj2)��=2 �(x); �(x) > 0The following analogue of Corollary 1.3 is valid for suh weights.Corollary 1.4. Let � be a weight funtion with a polynomial rate of growth � < N .Then the following estimate is valid:(1.19) C1 supx02
�(x0)u(x0) �� supx2
��(x) supy2
 �(1 + jx1 � y1j2) � � � (1 + jxn � ynj2)��N=2 u(y)� �� C2 supx02
�(x0)u(x0)The proof of this Proposition is ompletely analogous to the proof of Corollary 1.3(see e.g. [33℄). 10



x2 The a priori estimates, existene of solutions, uniqueness.In this Setion we derive a number of a priori estimates for the solutions of thereation-di�usion system(2.1) �tu = a�xu� �0u� f(u) + g; x 2 
; u���
 = 0; u��t=0 = u0in the unbounded domain 
 � Rn satisfying the assumptions of the previous Se-tion. Moreover, basing on these estimates we derive the existene of a solution u(t)for (2.1) it's uniqueness and obtain some estimates for di�erenes of solutions of(2.1) whih will be used below for studying the attrator of this system.Reall, that u(t) = (u1(t; x); � � � ; uk(t; x)) is assumed to be a vetor-valued fun-tion, a is a onstant k � k matrix satisfying the ondition a+ a� > 0, �0 > 0, thenonlinear term f(u) satis�es the assumptions(2.2) 8><>: 1: f 2 C2(Rk ;Rk )2: f(u):u � �C3: f 0(u) � �KMoreover, we impose the additional growth restrition for the nonlinearity f(u):(2.3) jf(u)j � C(1 + jujp);Where the exponent p is arbitrary for n � 4 and q < 1 + 4n�4 for n � 5.The external fore g is assumed to belong to the spae Lqb(
) for a ertain q � 2and q > n2 (note, that if n � 3 then the exponent q = 2 is admitted) and the initialdata u0 is supposed to be from the phase spae �b(
) :=W 2;qb (
) \ fu0���
 = 0g.The solution of (2.1) is de�ned to be a funtion(2.4) u 2 L1(R+ ;W 2;qb (
)) \ C([0;1); Lqb(
))whih satis�es the equation (2.1) in the sense of distributions.Remark 2.1. It follows from the Sobolev's embedding theorem and from ourhoie of the exponent q (q > n=2) that the solution u 2 L1(R+ � 
), onse-quently, the nonlinear term in (2.1) is well-de�ned and belongs to L1. Thereforeit follows from (2.4) and from the equation (2.1) that(2.5) �tu 2 L1(R+ ; Lqb(
))Moreover, it an be shown using the standard arguments (see e.g. [33℄) that(2.6) u 2 C([0; T ℄;W 2;qe�"jxj(
)) \ C1([0; T ℄; Lqe�"jxj(
))for every T > 0 and every " > 0. Note however, that in ontrast to the aseof bounded domains for generi u0 2 � the orresponding solution u(t) is notontinuous at t = 0 as a funtion with values in �b(
) (see e.g. [28℄ for theonditions on u0 whih guarantee this ontinuity).The main result of this Setion is the following theorem.11



Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).Then the following estimate is valid(2.7) ku(t)k�b(
) � Q �ku(0)k�b(
)� e��t +Q�kgkLqb(
)�where � > 0 is a ertain positive onstant depending only on the equation and Q isan appropriate monotoni funtion whih also depends only on the equation (andindependent of u and u0).Proof. We divide the proof of this theorem in a number of lemmata.Lemma 2.1. Let the above assumptions hold. Then the following estimate holdsfor every x0 2 
:(2.8) ku(T );
 \B1x0k20;2 + Z T+1T ku(t);
 \ B1x0k21;2 dt �� Ce��T �e�"jx�x0j; ju(0)j2�+ C �jgj2; e�"jx�x0j�where the positive onstants C;�; " are independent of x0 and (u; v) means the innerprodut in L2(
).The proof of this estimate is standard and is based on multiplying the equation(2.1) by u(t)e�"jx�x0j (with " > 0 small enough) integrating by parts and using thedissipativity assumption f(u):u � �C, the positiveness of a and the evident fatthat(2.9) krx �e�"jx�x0j� k � "e�"jx�x0j(see e.g. [14℄ or [33℄ for details).Lemma 2.2. Let the above assumptions hold. Then the following estimate is valid:(2.10) ku(T );
 \ B1x0k21;2 + Z T+1T ku(t);
 \ B1x0k22;2 dt �� Ce��T �e�"jx�x0j; ju(0)j2 + jrxu(0)j2�+ C �jgj2; e�"jx�x0j�where the positive onstants C;�; " are independent of x0.Proof. Let us multiply the equation (2.1) by the expression(2.11) nXi=1 �xi (�";x0(x)�xiu(t)) := �";x0�xu(t) +rx�";x0 :rxu(t)where �";x0(x) := e�"jx�x0j and " > 0 is small enough. Then we obtain after thestandard integration by parts and using the monotoniity assumption f 0(u) � �Kand the inequality (2.9) that(2.12) 1=2�t ��";x0 ; jrxu(t)j2�+ �0 ��";x0 ; jrxu(t)j2�+ � ��";x0 ; j�xu(t)j2� �� K ��";x0 ; jrxu(t)j2�+ Cjaj" (�";x0 j�xu(t)j; jrxu(t)j) ++ (�";x0 ; jgjj�xu(t)j+ "jgjjrxu(t)j)12



Estimating the last two terms in the right-hand side of (2.12) by Holder inequalitywe derive that(2.13) �t ��";x0 ; jrxu(t)j2�+ �0 ��";x0 ; jrxu(t)j2�+ � ��";x0 ; j�xu(t)j2� �� 2K ��";x0 ; jrxu(t)j2�+ C ��";x0 ; jgj2�Applying now the Gronwall inequality to (2.13) and using the inequality (2.8) inorder to estimate the t-integral over the right-hand side of (2.13) we derive that(2.14) ��";x0 ; jrxu(T )j2� � Ce��T ��";x0 ; jrxu(0)j2 + ju(0)j2�+ C ��";x0 ; jgj2�The estimates (2.13) and (2.14) imply that(2.15) Z T+1T ��";x0 ; j�xu(t)j2� dt �� C1e��T ��";x0 ; jrxu(0)j2 + ju(0)j2�+ C1 ��";x0 ; jgj2�Note also, that aording to our regularity assumptions on the boundary �
 wehave ellipti regularity for the Laplaian in 
 (see e.g. [14℄):(2.16) kvkW 2;2�";x0 (
) � C �k�xvkL2�";x0 (
) + kvkL2�";x0 (
)�The estimates (2.14){(2.16) imply the assertion of the lemma. Lemma 2.1 is proved.Our next task is to obtain the estimate for the W 2;2b -norm, analogous to (2.7).To this end we introdue the following norm, depending on " > 0 and x0 2 
:(2.17) kvk2D";x0 := kvk2W 2;2�";x0 (
) + kf(v)k2L2�";x0 (
)Lemma 2.3. Let the above assumptions hold and let " > 0 be small enough. Thenthe following estimate is valid for the solutions of the equation (2.1):(2.18) ku(t)k2D";x0 � Ce2Kt�ku(0)k2D";x0 + 1 + kgk2L2�";x0 (
)�where the onstant K is the same as in (2.2) and the onstant C is independent ofx0 and ".Proof. We give below only the formal deduing of the estimate (2.18) whih an beeasily justi�ed using e.g. the standard di�erene approximations for the derivative�tu and the regularity (2.6).Let us di�erentiate the equation (2.1) with respet to t and denote �(t) := �tu(t).Then this funtion satis�es the equation(2.19) �t� = a�x� � �0� � f 0(u)�; �(0) = a�xu0 � f(u0) + g; ����
 = 0Let us multiply this equation by �(t)�";x0 and integrate over x 2 
. Then integrat-ing by parts and using the monotoniity assumption f 0(u) � �K and the inequality(2.9) (where " is small enough) we derive the following estimate:(2.20) �t ��";x0 ; j�(t)j2� � 2K ��";x0 ; j�(t)j2�13



Applying the Gronwall inequality to this relation we obtain that(2.21) k�tu(t)k2L2�";x0 (
) � Ce2Kt�ku0k2D";x0 + 1 + kgk2L2�";x0 (
)�Having the estimate (2.21) for the L2-norm of the t-derivative one an onsider theparaboli equation (2.1) as an ellipti boundary value problem at a �xed point T :(2.22) a�xu(T )� f(u(T )) = hu := �tu(T )� g; u(T )���
 = 0with the right-hand side hu belonging to the spae L2�";x0 (
). Arguing as in theproof of Lemmata 2.1 and 2.2 (multiplying the equation by u�";x0 and by theexpression (2.11) and so on) one an easily derive the estimate(2.23) ku(T )k2W 2;2�";x0 (
) � C �1 + khuk2L2�";x0 (
)�The estimates (2.21) and (2.23) immediately imply that(2.24) ku(T )k2W 2;2�";x0 (
) � C1e2Kt�ku0k2D";x0 + 1 + kgk2L2�";x0 (
)�Thus, the W 2;2-part of the estimated (2.18) is proved. The rest part of it (theestimate of L2�";x0 -norm of f(u)) is an immediate orollary of the inequalities (2.21),(2.24) and of the equation (2.1). Lemma 2.3 is provedApplying the supx02
 to the both sides of the inequality (2.18) and using theresult of Corollary 1.3 we derive that(2.25) ku(t)k2W 2;2b (
) � Ce2Kt �ku0k2W 2;2b (
) + kf(u0)k2L2b(
) + 1 + kgk2L2b(
)�Note, that aording to our growth restritions to f and to the Sobolev embeddingtheorem(2.26) kf(u0)kL2b(
) � Q(ku0kW 2;2b (
))for the appropriate monotoni funtion Q (Q(z) := C(1 + jzjp)).The inequalities (2.25) and (2.26) imply the following estimate:(2.27) ku(t)kW 2;2b (
) � CeKt �Q(ku0kW 2;2b (
)) + kgkL2b(
)�Note however that the obtained estimate of the W 2;2b -norm diverges exponentiallywith respet to t ! 1 whih is not good from the attrator's point of view. Inorder to remove this divergene we need the following smoothing property.Lemma 2.4. Let the above assumptions hold. Then the following estimate is validfor any solution of the problem (2.1):(2.28) ku(1)kW 2;2b (
) � Q(ku(0)kW 1;2b (
)) + CkgkL2b(
)14



for a ertain monotoni funtion Q.Proof. Let us �x an arbitrary x0 2 
 and a suÆiently small " > 0. It follows fromthe estimate (2.10) and the result of Theorem 1.1 that(2.29) Z 10 ku(t)k2W 2;2�";x0 (
) dt � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�It follows from (2.29) that there exists a point T = T (x0) 2 [0; 1℄ suh that(2.30) ku(T )k2W 2;2�";x0 (
) � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�Aording to our growth restritions to the nonlinearity f(u), Sobolev embeddingtheorem and the result of Propositions 1.1 and 1.2 we derive that(2.31) kf(u(T ))k2L2�p";x0 (
) � C �1 + Zx2
 e�p"jx�x0jju(T; x)j2p dx� �� C1�1 + Zx2
 e�p"jx�x0jku(T ); Vxk2p0;2p dx� �� C2 �1 + Zx2
 e�p"jx�x0jku(T ); Vxk2p2;2 dx� �� C3�1 + Zx2
 e�p"jx�x0j�Zy2
 e�Æjy�xjku(T ); Vyk22;2 dy�p dx� �� C4�1 + Zx2
 e�"jx�x0jku(T ); Vxk22;2 dx�p � C5 �1 + ku(T )k2W 2;2�";x0 (
)�pwhere Æ > " and Vx is the same as in the onditions (1.5) and (1.6). Here we haveused also the evident formula (see e.g. [14℄)(2.32) kv; Vxkl;p � CÆ Zy2
 e�Æjx�yjkv; Vykl;p dywhih holds for every Æ > 0.The estimates (2.30) and (2.31) imply that(2.33) ku(T )k2Dp";x0 � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�pApplying now the estimate (2.18) with " replaed by p" at the initial time momentt = T instead of t = 0 we derive from (2.33) that(2.34) ku(1)k2W 2;2�p";x0 (
) � C1 �1 + kgk2L2�";x0 (
) + ku(0)k2W 1;2�";x0 (
)�pNote that all onstants Ci in the previous estimates were in a fat independent ofthe hoie of x0 2 
, onsequently applying the supx02
 to the both sides of (2.34)and using the result of Corollary 1.3 we derive the estimate (2.28). Lemma 2.4 isproved.Thus, we have proved the analogue of the estimate (2.7) for q = 2.15



Lemma 2.5. Let the above assumptions hold. Then(2.35) ku(t)kW 2;2b (
) � Q(ku0kW 2;2b (
))e��t +Q(kgkL2b(
))for a some positive � > 0 and a ertain monotoni funtion Q.Indeed, the assertion of the lemma is a simple orollary of estimates (2.10), (2.27)and (2.28)Our task now is starting from the W 2;2b -estimate (2.35) and using the para-boli regularity theorems to improve steps by steps this estimate to the W 2;qb -es-timate (2.7). For the �rst we derive the W 2��;qb -estimate for a suÆiently smallpositive �.Lemma 2.6. Let the above assumptions hold. Then for every � > 0 the followingestimate is valid:(2.36) ku(t)kW 2��;qb (
) � Q�(ku(0)k�b(
))e��t +Q�(kgkLqb(
))where � > 0 is a ertain positive onstant and Q� is a monotoni funtion (de-pending on �).Proof. Reall that we assume that the domain 
 satis�es the onditions (1.5) and(1.6) with R0 = 2. Let us onsider the ut-o� funtion  (x) 2 C10 (Rn ) suh that (x) = 1 if x 2 B10 and  (x) = 0 if x =2 B20 . Denote  x0(x) :=  (x � x0) andvx0(t) :=  x0u(t). It follows from the equation (2.1) and from the ondition (1.5)that vx0(t) is a solution of the following problem:(2.37) �tvx0 � a�xvx0 + �0vx0 = hx0(t) :=  x0g � 2rx x0 :arxu���x x0 :avx0 �  x0f(u); vx0 ��Vx0 = 0; vx0��t=0 =  x0u(0)The following standard regularity result is of fundamental signi�ane for our proofof the lemma.Proposition 2.1. Let the domains Vx0 satis�es the assumptions (1.5) and (1.6).Then for every 1 � � > 0, 1 < r <1, and t 2 [0; 1℄ the following estimate is validfor the solution vx0 of the problem (2.37):(2.38) kvx0(t); Vx0k2��;r � C  kvx0(0); Vx0k2��;r + sups2[0;t℄ khx0 ; Vx0k0;r!where the onstant C = C(r; �) is independent of x0.Moreover the following version of smoothing property is valid for every t 2 R+ :(2.39) kvx0(t+ 1); Vx0k2��;r � C1 kvx0(t); Vx0k1;2 + sups2[t;t+1℄ khx0 ; Vx0k0;r!where the onstant C1 is also independent of x0.Indeed, the estimates (2.38) and (2.39) an be easily proved using the analytisemigroups theory (see e.g. [9℄, [30℄). Moreover the assumptions (1.5) and (1.6)imply that the onstants C and C1 are independent of x0.16



Assume now that we have already proved the estimate (2.36) with q replaed byl, 2 � l < r and obtain this estimate for a larger exponent r: q � r = r(l) > l.Indeed, let t � 1, then applying the supx02
 to the both sides of (2.38) we derivethat(2.40) ku(t)kW 2��;rb (
) � C �ku0k�b(
) + kgkLqb(
)�++ C sups2[0;1℄�ku(s)kW 1;rb (
) + kf(u(s))kLrb(
)�Let us estimate the right-hand side of (2.40) using the W 2��;lb -norms of u(s) whihare assumed to be known.Indeed, the third term into the right-hand side of (2.40) an be estimated ina suh way if r � r1(l) := nln�l(1��) , where r1 = r1(l) is the Sobolev's maximalexponent of the embedding W 2��;l �W 1;r1 (as usual r1 =1 if n < l(1��). Notethat r1(l)=l > r1(2)=2 = n=(n� 2(1� �)) > Æ1 > 1.Analogously, using the growth restrition (2.3) and Sobolev's embedding theoremW 2��;l � Lp� with p�(l) := nln�l(2��) we dedue the estimate(2.41) kf(u(s))kLrb(
) � C �1 + ku(s)kW 2��;l(
)�pif r � r2(l) := p�(l)p . Note that aording to our growth restritions p < nn�4 (inthe ase n � 4 we have the embedding W 2;2 � Lr for every r and onsequentlyLemma 2.5 implies the estimate of Lr-norm of f(u) for every r <1), onsequently(2.42) r2(l)l > r2(2)2 = np(n� 4) � n� 4n� 4 + 2� > Æ2 > 1if � > 0 is small enough. Let r(l) := minfq; r1(l); r2(l)g. Then(2.43) r(l) � minfq; Ælg; Æ := minfÆ1; Æ2g > 1if � is small enough, and (2.40) and (2.41) imply that(2.44) ku(t)kW 2��;r(l)b (
) � C(1 + kgkLqb(
)) + C sups2[0;1℄ ku(s)kpW 2��;lb (
)for t � 1.Let now t � 1. Then using the estimate (2.39) instead of (2.38) and arguing asin the proof of (2.44) we derive the estimate(2.45) ku(t)kW 2��;r(l)b (
) � C �1 + kgkLqb(
)�+ sups2[t�1;t℄ ku(s)kpW 2��;lb (
)Thus, if the analogue estimate (2.36) would be proved for some q = l, then theestimates (2.44) and (2.45) would imply this estimate for q = r(l) > l (if � > 0 issmall enough). Reall also that the estimate (2.36) for q = 2 is proved in Lemma2.5. Therefore, starting with l0 = 2 and iterate the estimates (2.44) and (2.45) withlk+1 := r(lk) we obtain �nally the estimate (2.36) with l = q (the �niteness of thenumber of iterations is guaranteed by the estimate (2.43)). Lemma 2.6 is proved.17



Note that aording to our assumptions on the exponent q (q > n=2) the em-bedding W 2��;qb � Cb holds if � > 0 is small enough. Therefore the estimate (2.36)implies the following estimate for the C-norm of solutions of (2.1):(2.46) ku(t)kCb(
) � Q(ku0k�b(
))e��t +Q(kgkLqb(
))with the positive onstant � > 0 and a ertain monotoni funtion Q.Now we are in a position to prove that (2.36) is valid with � = 0 as well and toomplete the proof of the theorem. To this end we introdue a funtion ~vx0 = ~vx0(x)as a solution of the equation(2.47) a�x~vx0 � �0~vx0 +  x0g = 0; ~vx0 ���Vx0 = 0(where  x0 and Vx0 are the same as in the proof of Lemma 2.6). Then, due to theLq-regularity theorem for the Laplaian (see e.g. [30℄),(2.48) k~vx0 ; Vx0k2;q � Ckg; Vx0k0;qMoreover, due to the assumptions (1.5) and (1.6) the onstant C is independent ofx0 2 
.Let wx0(t) := vx0(t) � ~vx0 where vx0 is the same as in the proof of the previouslemma. Then this funtion evidently satis�es the equation:(2.49) �twx0 � a�xwx0 + �0wx0 = ~hx0(t) := �2rx x0 :arxu(t)���x x0 :au(t)�  x0f(u(t)); wx0 ���Vx0 = 0; wx0��t=0 =  x0u0 � ~vx0The proof of the estimate (2.7) is based on (2.36) and on the following standardregularity result for the auxiliary problem (2.49).Proposition 2.2. Let the above assumptions hold and let � > 0 is a positivenumber. Then the solutions of the equation (2.49) satisfy the estimate(2.50) kwx0(t); Vx0k2;q � C  kwx0(0); Vx0k2;q + sups2[0;1℄ k~hx0 ; Vx0k�;q!is valid for t � 1, where the onstant C is independent of x0.Moreover, the following version of the smoothing property is valid for every t � 0and � > 0:(2.51) kwx0(t+1); Vx0k2+���;q � C  kwx0(t); Vx0k1;2 + sups2[t;t+1℄ k~hx0(s); Vx0k�;q!where the onstant C = C(�; �) is also independent of x0.Indeed, the estimates (2.50) and (2.51) an be obtained using e.g. the analytisemigroups theory (see [9℄, [30℄). The fat that the onstant C is independent ofx0 is guaranteed by the regularity assumptions (1.5) and (1.6) on the domains Vx0 .Note that due to the fat that f 2 C1 and due to the embedding W 2��;q � Cfor � > 0 is small enough we have the estimate(2.52) kf(u(s))kW 1;qb (
) � Q(ku(s)kW 2��;qb (
))18



for a ertain monotoni funtion Q (depending only on f). Consequently, arguingas in the proof of Lemma 2.6 and using the estimates (2.50){(2.52) we derive that(2.53) ku(t)kW 2;qb (
) � C �ku0k�b(
) + kgkLqb(
)�+ sups2[0;1℄Q1(ku(s)kW 2��;qb (
))is valid for t � 1 and for the appropriate funtion Q1 and the following smoothingproperty(2.54) ku(t+ 1)kW 2;qb (
) � sups2[t;t+1℄Q1(ku(s)kW 2��;qb (
)) + CkgkLqb(
)is also valid for every t � 0. Inserting the estimate (2.36) into the right-handside of (2.53) and (2.54) we derive after simple transformations (see e.g. [33℄) theinequality (2.7). Theorem 2.1 is proved.Remark 2.1. Arguing as in the proof of Theorem 2.1 one an dedue the followingsmoothing property for the solutions of (2.1)(2.55) ku(1)k�b(
) � Q(ku(0)kL2b(
))Indeed, the smoothing property from W 1;2b (
) to W 2;qb (
) is in a fat proved inLemmata 2.3{2.6. The smoothing property from L2b to W 1;2b an be proved in astandard way (see the proof of Lemma 2.2, only instead of multiplying the equationby the expression (2.11) one should multiply it by t(2.11)).As usual having the a priori estimate (2.7) one an easily verify the existene ofa solution for the problem (2.1).Theorem 2.2. Let the above assumptions hold. Then for every u0 2 �b(
) theequation (2.1) possesses a unique solution u(t). Moreover, the following estimateholds for every two solutions u1(t) and u2(t) of the equation (2.1):(2.56) ku1(t)� u2(t)kL2b(
) � CeKtku1(0)� u2(0)kL2b(
)where the onstant K is the same as in (2.2) and onstant C depends only on theequation.Proof. The existene of a solution of (2.1) for the ase where the domain 
 isbounded an be dedued from the a priori estimate (2.7) using the Leray-Shauder�xed point priniple (see e.g [23℄). The existene of a solution in the unboundeddomain 
 an be proved after that approximating the unbounded domain 
 by thebounded ones 
N and passing to the limit N !1 (see e.g. [14℄ or [33℄ for details).Let us prove the estimate (2.56) whih immediately implies the uniqueness. Letu1(t) and u2(t) be two solutions of (2.1) and let v(t) = u1(t) � u2(t). Then thisfuntion satis�es the equation(2.57) �tv = a�xv � �0v � l(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0)where l(t) := R 10 f 0(su1(t)+(1�s)u2(t)) ds, l(t) 2 L(Rk ;Rk ). Note that aording toour assumptions on f , we have l(t) � �K, onsequently, multiplying the equation(2.57) by v(t)�";x0 , integrating over the x 2 
 and arguing as in the proof ofLemmata 2.1 and 2.2 we derive that(2.58) kv(t)k2L2�";x0 (
) + Z t+1t kv(s)k2W 1;2�";x0 (
) dt � Ce2Ktkv(0)k2L2�";x0 (
)Applying the operator supx02
 to the both sides of the obtained inequality andusing the result of Corollary 1.3 we obtain the inequality (2.56). Theorem 2.2 isproved. 19



Corollary 2.1. Let the above assumptions hold. Then the problem (2.1) de�nes asemigroup St in the phase spae �b(
):(2.59) St : �b(
)! �b(
); u(t) = Stu0where u(t) is a solution of (2.1) with u(0) = u0.Remark 2.2. The estimate (2.56) admits to extend by ontinuity the semigroupSt from �b(
) to L2b(
). Moreover, due to the smoothing property (2.55) thesemigroup bSt thus obtained will at from L2b(
) to �b(
) if t > 0. Thus, it ispossible to de�ne a solution of the problem (2.1) for every initial data from L2b(
).We onlude this Setion by formulating some results on the smoothing propertyfor di�erene of solutions of (2.1) whih are of fundamental signi�ane for our studythe attrator of (2.59).Theorem 2.3. Let the above assumptions hold. Then for every two solutionsu1(t); u2(t) 2 �b and for every " > 0 the following estimate is valid:(2.60) ku1(1)� u2(1);
 \ B1x0k21;2 � Cku1(0)� u2(0)k2L2�";x0 (
)where the onstant C = C(ku1k�b ; ku2k�b ; ") is independent of x0 2 
. Analo-gously,(2.61) ku1(1)� u2(1);
 \ B1x0kq2;q � C1ku1(0)� u2(0)kqL2�";x0 (
)where C1 is also independent of x0 2 
.Remark 2.3. Evidently the �rst estimate is an immediate orollary of the seondone but nevertheless it is more onvenient for us to formulate them separately takingin mind the further appliations of them for study the entropy of the attrator.Proof. The proof of these estimates is based on a standard analysis of the linearequation (2.57) and an be obtained in the spirit of the proof of Theorem 2.1 butessentially simpler beause the equation (2.57) is linear and the oeÆient l(t) issmmoth enough:(2.62) kl(t)kW 1;qb \Cb(
) � Q(ku1(0)k�b ; ku2(0)k�b)(due to (2.7) and due to the fats that f 2 C2 and W 2;qb � C (see e.g. [14℄ or[33℄ for details). Indeed, in order to prove the �rst estimate of the theorem it issuÆient to multiply the equation (2.57) by tPni=1 �xi (�";x0�xiv(t)), integrate overx 2 
 and apply the Gronwall inequality using the estimates (2.61) and (2.58) (seethe proof of Lemma 2.2). The seond one an be dedued from the �rst one usinge.g. the iteration method of improving the smoothness introdued in the proof ofLemma 2.6. Theorem 2.3 is proved.x3 The attrator.In this Setion we prove the existene of the loally ompat attrator A for thesemigroup St, generated by the equation (2.1).20



Note that although aording to Theorem 2.1 the semigroup St : �b(
)! �b(
),generated by the equation (2.1) possesses a bounded absorbing set B in the phasespae �b(
), i.e. for any other bounded subset of B � �b(
) there exists T = T (B)suh that StB � B if t � T(the existene of B is an immediate orollary of the estimate (2.7)) but neverthelessin ontrast of the ase of bounded domains in unbounded domains the ompatattrator in �b(
) may not exist, e.g. the Chafee-Infante equation in Rn (k = 1,f(u) = u3 � �u, � > �0) does not possess a ompat attrator in the topology of�b(
) (see e.g. [33℄)That is why (following to [17℄, [18℄, [26℄, [27℄) we will onstrut below the at-trator A of the semigroup (2.59) whih attrats bounded subsets of �b(
) only ina loal topology of the spae �lo = W 2;qlo (
) (i.e., A is the (�b;�lo)-attrator of(2.59) in notations of [4℄).Reall that the spae �lo(
) is reexive metrizable F-spae whih is generatedby seminorms k � ;
 \B1x0k2;q, x0 2 
.De�nition 3.1. A set A � �b(
) is de�ned to be the attrator of the semigroupSt if the following assumptions hold:1. The set A is ompat in �lo(
).2. The set A is stritly invariant with respet to St, i.e.StA = A for t � 03. The set A is an attrating set for St in loal topology, i.e. for every neigh-borhood O(A) of A in the topology of the spae �lo(
) and for every bounded inuniform topology subset B � �b(
) there exists T = T (O; B) suh thatStB � O(A) if t � TReall that the �rst ondition means that the restrition A��
1 is ompat in thespae W 2;q(
1) for every bounded 
1 � 
.Analogously, the third ondition means that for every bounded 
1 � 
, everybounded B in �b(
) and every W 2;q(
1)-neighborhood O(A��
1) of the restritionA��
1 there exists T = T (
1;O; B) suh that(StB)��
1 � O(A��
1) if t � TTheorem 3.1. Let the above assumptions be valid. Then the semigroup St, de�nedby (2.59), possesses an attrator A in the sense of De�nition 3.1 whih has thefollowing struture:(3.2) A = K��t=0where we denote by K the set of all solutions u of (2.1), de�ned and bounded for allt 2 R (supt2R ku(t)k�b(
) <1).Proof. Aording to the attrator's existene theorem for abstrat semigroups (see[4℄), it is suÆient to verify the following onditions:1. The semigroup St possesses a ompat absorbing set K in �lo-topology.2. The operators St have losed graphs on K in the �lo-topology for every �xedt � 0.Let us verify the �rst ondition. To this end we need the following Lemmata21



Lemma 3.1. Let the domain 
 satisfy the assumptions (1.5) and (1.6). Then forevery g 2 Lqb(
) the problem(3.3) a�xv � �0v + g = 0; v���
 = 0possesses a unique solution v = v(g) 2 W 2;qb (
) and the orresponding estimate(3.4) kvkW 2;qb (
) � CkgkLqb(
)is validIndeed, the maximal regularity (3.4) follows e.g. from the estimate (2.7). Theexistene of a solution and it's uniqueness an be veri�ed as in Theorem 2.2.Lemma 3.2. Let u(t) be a solution of the equation (2.1), v = v(g) be the solutionof (3.4) onstruted in Lemma 3.1, and w(t) = u(t) � v. Then there is a positive� > 0 depending only on the equation suh that(3.5) kw(1)kW 2+�;qb (
) � Q(ku(0)k�b(
)) +Q(kgkLqb(
))for a ertain monotoni funtion Q.Indeed, basing on the smoothing property (2.51) and arguing as in the end ofthe proof of Theorem 2.1 one an derive the estimate(3.6) kw(1)kW 2+�;qb (
) � sups2[0;1℄Q1(ku(s)k�b(
))for a ertain monotoni funtion Q1 and positive �. Inserting now the estimate(2.7) into the right-hand side of (3.6) we obtain (3.5).The estimates (2.7) and (3.5) imply that the set(3.7) K := v(g) +BR(W 2+�;qb ); BR(W 2+�;qb ) :== fw 2W 2+�;qb (
) : kwkW 2+�;qb � Rgwill be an absorbing set for the semigroup (2.59), generated by the equation (2.1)if R is large enough. It remains to note that the absorbing set K thus obtained isevidently ompat in �lo(
). Thus, the �rst assumption of the abstrat theoremon the attrator's existene is veri�ed.Let us verify the seond one. To this end we need one more lemma.Lemma 3.3. Let B be a bounded set in �b(
) and � be a positive weight fun-tion from the lass introdued in Setion 1 suh that RRn �(x) dx < 1. Then thetopologies indued on B by the embeddings B � �lo(
) and B � ��(
) :=W 2;q� (
)oinide.The assertion of the lemma is more or less evident and we leave the rigorousproof of it to a pedant reader.Let us �x �(x) = e�"jxj where " > 0 is small enough. Then due to Lemma 3.3in order to prove that St has a losed in �lo-topology graph on K it is suÆientto prove that the onvergenes(3.8) u0 = ��� limn!1un0 ; v = ��� limn!1Stun022



with un0 ; u0 2 K imply that v = Stu0. But aording to the estimate (2.58) thesemigroup St is globally Lipshitz ontinuous in the L2�-topology, onsequently(3.9) Stu0 = L2�� limn!1Stun0The onvergenes (3.8) and (3.9) imply that v = Stu0. Thus, all assumptionsof the abstrat theorem on the attrator's existene are veri�ed and onsequentlythe semigroup St possesses an (�b;�lo)-attrator whih has the struture (3.2).Theorem 3.1 is proved.Remark 3.1. It is not diÆult to prove arguing in the spirit of Setion 1 that thesemigroup St not only has a losed graph in �lo but Lipshitz ontinuous and evendi�erentiable on every �b-bounded subset (see also [14℄).x4 Kolmogorov's "-entropy: definitions and typial examples.In this Setion we reall briey the de�nition of "-entropy and give the upperand lower estimates of it when "! 0 for the typial sets in funtional spaes. Forthe detailed study of this onept see [22℄, [30℄.De�nition 4.1. Let M be a metri spae and let K be preompat subset of it.For a given " > 0 let N"(K) = N"(K;M ) be the minimal number of "-balls in Mwhih over the set K (this number is evidently �nite by Hausdor� riteria). Byde�nition, Kolmogorov's "-entropy of K in M is the following number:(4.1) H " (K) = H " (K;M ) � lnN"(K)Example 4.1. Let K be ompat n-dimensional Lipshitz manifold in M . Thenthe evident estimates imply that(4.2) C1�1"�n � N"(K) � C2�1"�nand onsequently(4.3) H " (K) = (n+ o(1)) ln 1"when "! 0.This example justi�es the following de�nition.De�nition 4.2. The fratal (box-ounting) dimension of the set K �� M is de-�ned to be the following number:(4.4) dimF (K) = dimF (K;M ) = lim sup"!0 H " (K)ln 1"Note that the fratal dimension dimF (K) 2 [0;1℄ is de�ned for any ompat setin M but may be not integer if K is not a manifold.23



Example 4.2. Let M = [0; 1℄ and let K be the ternary Cantor set in M . Then itis not diÆult to obtain that(4.5) C1 �1"�d � N"(K) � C2�1"�d ; d = ln 2ln 3and onsequently dimF (K) = d = ln 2ln 3 .Consider now the examples of in�nite dimensional sets (i.e. dimF (K) =1).The following two examples give the typial asymptotis for the entropy in thespaes of analytial funtions.Example 4.3. Let K be the set of all analyti funtions f in a ball B(R) of radiusR > 1 in C n suh that kfkL1(B(R)) � 1 and let M be the spae C(BRe), whereBRe = fz 2 C n : Im zi = 0 ; jzj � 1g. Thus, K onsists of all funtions fromC(BRe) whih an be extended holomorphially to the ball B(R) � C n and theC-norm of this extension is not greater then one. Then(4.6) C1 �ln 1"�n+1 � H " (K;M ) � C2�ln 1"�n+1For the proof of this estimate see [22℄.Example 4.4. Let M be the same as in previous example and let K be the set ofall funtions f in M whih an be extended to the entire funtion bf in C n whihsatisfy the estimate(4.7) j bf(z)j � K1eK2jzj; z 2 C nThen, as proved in [22℄,(4.8) C1 �ln 1"�n+1�ln ln 1"�n � H " (K) � C2 �ln 1"�n+1�ln ln 1"�nThe next example gives the typial asymptotis for the entropy in the lass ofSobolev spaes in bounded domains.Example 4.5. Let 
 be smooth bounded domain in Rn andW l1;p1(
) ��W l2;p2(
) ; 0 � li <1; 1 < pi <1; l1 > l2i.e., aording to the embedding theorem l1n � 1p1 > l2n � 1p2 .Let now M =W l2;p2(
) and K be the unitary ball in W l1;p1(
). Then(4.9) C1 �1"� nl1�l2 � H " (K) � C2�1"� nl1�l2The proof of this estimate an be found in [30℄.The following lass of funtions will be essentially used in the next Setion inorder to obtain the lower bounds of "-entropy of attrators.24



De�nition 4.3. Let us denote by B � (Rn ) = B� (Rn ; C ) the subspae of L1(Rn ; C )whih onsists of all funtions � with the Fourier transform b� satisfying the ondi-tion(4.10) supp b� � [��; �℄nIt is well-known that every funtion � 2 B� an be extended to entire funtion~�(z) 2 A(C n ) whih satisfy the estimate(4.11) supx2Rn j~�(x+ iy)j � Ck�;Rnk0;1 � e�Pni=1 jyijMoreover, every funtion � 2 L1, whih possesses the entire extension ~� satisfying(4.11) belongs in fat to the spae B� .Example 4.6. Let K = B(0; 1; B� ), M = C(BR0 ). Then(4.12) H " (B(0; 1; B� ); Cb(BR0 )) � C(R+K ln 1" )n ln 1" ; " � "0 < 1Moreover, C and K are independent of R.For the proof of this estimate see for instane [33℄. We formulate in onlusionthe lower bounds for the entropy form Example 4.6.Proposition 4.1. The following estimate is valid for R � R0 and " < "0(4.13) H " �B(0; 1; B� ); Cb(BR0 )� � CRn ln 1"where the onstant C is independent of R and ".For the proof of (4.13) see for instane [22℄ or [33℄. Thus, the estimate (4.12) issharp for R � ln 1" and R >> ln 1" . For the ase R << ln 1" we formulate only thefollowing result (see [33℄).Proposition 4.2. For every Æ > 0 there exists CÆ > 0 suh that(4.14) H " �B(0; 1; B� ); C(B10)� � CÆ �ln 1"�n+1�ÆAnd onsequently, the estimate (4.12) is sharp for the ase R << ln 1" also.Remark 4.1. Instead of the spaes B � one an onsider a slightly general lassB�;� , � 2 Rk whih onsists of funtions � with Fourier transform b� satisfying theassumption(4.15) supp b� � � + [��; �℄nNote that the spae B �;� is isomorphi to B� and this homeomorphism is given bymultipliation on the funtion ei�:x. Consequently, the estimates (4.12) and (4.14)remain valid for the lass B �;� as well.We will need also the spae of real parts of funtions from B �;� (Rn ; C ).De�nition 4.4. De�ne the spae BRe�;� by the following expression:(4.16) BRe�;� (Rn ;R) := f� 2 L1(Rn ) : 9u 2 B �;� (Rn ; C ); � = ReugRemark 4.2. Evidently, BRe�;� � B�;�+B�;�� . Moreover, the analogues of estimates(4.13) and (4.14) are valid for this spae as well. The proof of this fat an be derivedin the same way as for the ase � = 0 (see e.g. [33℄).25



x5 The entropy of the attrator: the upper bounds.In this Setion using the tehnique developed in [33℄ we obtain the upper es-timates of "-entropy for the attrator A of the equation (2.1). Reall that weonstruted the attrator A whih was ompat only in F-spae �lo but not inthe uniform topology of �b(
). That is why we will estimate the entropy of therestritions A��
\BRx0 of the attrator A to an arbitrary ball BRx0 in terms of threeparameters ", R and x0.Theorem 5.1. Let the assumptions of Setion 2 be valid and let(5.1) vol
;x0(R) = vol(
 \ BRx0)Then for every R 2 R+ , x0 2 
, and " � "0 < 1(5.2) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1"where the onstants C, K and "0 are independent of R and x0 2 
.The proof of this Theorem is based on the estimates (2.60) and (2.61) with aspeial hoie of the weight funtion � and ompletely analogous to the proof of[33,Th. 8.1℄. For the onveniene of the reader we give below a sketh of this proof.De�ne a family of weight funtions with the rate of growth 1 by the followingformula(5.3)  R;x0(x) = � eR�jx�x0j if jx� x0j � R1 if jx� x0j � RIt follows from the de�nition of these funtions that(5.4) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � H " �A;W 2;qb; R;x0 (
)�Hene, instead of estimating the entropy of the restrition A��
\BRx0 it is suÆientto estimate the entropy of the attrator in weighted Sobolev spaes W 2;qb; R;x0 (
).Let now u1(t) and u2(t) be two solutions of the equation (2.1) whih belong tothe attrator A. Then, aording to the estimates (2.61)(5.5) ku1(1)� u2(1)kW 2;qb; q=2R;x0 (
) � Cku1(0)� u2(0)kL2b; R;x0 (
)Here the onstant C is independent of u1; u2 2 A. (Moreover, sine R;x0(x + y) � ejxj R;x0(y)then C R;x0 � 1 and onsequently C is independent of R and x0 also.)Indeed, applying the operator supz2
  R;x0(z)q=2 to the both sides of (2.61) (inwhih x0 is replaed by z) we obtain thatku(1)� u2(1)kqW 2;qb; q=2R;x0 (
) �� C �supz2
 R;x0(z) Zx2
 e�"jx�zjku1(0)� u2(0);
 \ B1xk20;2 dx�q=226



Applying the estimate (1.17) to the right-hand side of the previous formula wederive (5.5).The estimate (5.5) together with the desription (3.2) of the attrator A impliesimmediately that(5.6) H " �A;W 2;qb; q=2R;x0 (
)� � H "=(2C) �A; L2b; R;x0 (
)�The estimate (5.6) redues our problem to estimating the entropy of the attratorin the spae L2b; R;x0 (
).The following orollary of the estimate (2.60) (whih an be easily derived in thesame way as (5.5)) is of fundamental signi�ane for this estimation: let u1 and u2be arbitrary two solutions of the equation (2.1) whih belong to the attrator, thenthe following estimate is valid:(5.7) ku1(1)� u2(1)kW 1;2b; R;x0 (
) � Cku1(0)� u2(0)kL2b; R;x0 (
)where the onstant C depends only on the equation.It has been proved in [33℄ that (5.7) implies the following reurrent estimateLemma 5.1[33℄. Let (5.7) be valid. Then(5.8) H "=2k �A; L2b; R;x0� � H " �A; L2b; R;x0�+ k lnMk(")where(5.9) lnMk(") � C vol
;x0(R + L ln 2k" )Moreover, the onstants C and L is independent of k, R, " � "0 and x0.The estimate (5.2) is an immediate orollary of (5.8). Indeed, sine A is boundedin �b then there exists R0 > 0, suh that HR0 (A; L2b;�R;x0 ) = 0 for every R and x0.The estimate (5.8) implies now that(5.10) HR0=2k �A; L2b;�R;x0� � Ck vol
;x0(R+ L ln 2kR0 )Fixing now k � ln R0" and using (5.4) and (5.6) we obtain (5.2). Theorem 5.1 isproved.Reall now a number of standard orollaries of the estimate (5.1) (see [15℄, [33℄,and [36℄).Corollary 5.1. Sine Cb(
) �W 2;qb (
) then(5.11) H " �A; C(
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1"Corollary 5.2. Let 
 = Rn . Then vol
;x0(r) = rn and onsequently(5.12) H " �A;W 2;qb (BRx0)� � ~C �R+K ln 1"�n ln 1"27



Taking R = ln 1" we obtain that(5.13) H " �A;W 2;qb (Bln 1"x0 )� � C1�ln 1"�n+1Note that the estimate (5.12) gives the same type of upper bounds for R = 1 andR = ln 1" .Corollary 5.3. Let 
 be a bounded domain. Then Theorem 5.1 implies the esti-mate(5.14) H " �A;W 2;qb (
)� � C vol(
) ln 1"whih reets the well-known fat that in this ase the attrator A has the �nitefratal dimension.Corollary 5.4. Let 
 = Rk � !n�k be a ylindrial domain where ! is bounded.Then the estimate (5.1) gives the following bound of the "-entropy of the attra-tor A:(5.15) H " �A;W 2;qb (
 \ BRx0)� � C �R+K ln 1"�k ln 1"De�nition 5.1 [22℄. Let A � �b(
) be a ompat set in the spae �lo(
). Thenthe "-entropy per unit volume is de�ned to be the following number:(5.16) H "(A) = lim supR!1 H " �A;W 2;qb (
 \ BR0 )�vol
;0(R)Corollary 5.5. The following estimate is valid:(5.17) H "(A) � C ln 1"Indeed, the estimate (5.17) is an immediate orollary of the estimate (5.2) andtrivial assertion(5.18) limR!1 vol
;x0(R+ C1)vol
;x0(R) = 1De�nition 5.2. Let bhsp(A) be the following number(5.19) bhsp(A) = lim sup"!0 H "(A)ln 1"Corollary 5.6. Let the assumptions of Theorem 6.1 hold. Then(5.20) bhsp(A) <1Remark 5.1. The relations between the quantity bhsp(A) (whih is alled belowthe modi�ed (spatial) topologial entropy) and the phenomena of spatial haotisityin the RDE in unbounded domains will be lari�ed in Setions 7 and 8.28



x6 Infinite dimensional unstablemanifolds and lower bounds of "-entropyIn this Setion we derive using the tehnique of in�nite dimensional manifoldsdeveloped in [14℄, [33℄ the lower bounds for the entropy of the attrator A. Werestrit ourselves to onsider the spatially homogeneous ase 
 = Rn , g � 0. Notethat in this ase the equation f(z) + �0z = 0 always has at least one solutionz0 = (z10 ; � � � ; zk0 ) 2 Rk (due to the assumptions (2.2)) and onsequently the equa-tion (2.1) has at least one spatially homogeneous equilibria point u(t) � z0. We willobtain the lower bounds for the attrator's entropy under the additional assump-tion that the equation (2.1) possesses at least one exponentially unstable spatialhomogeneous equilibria point z0 2 Rk (without loss of generality we will assumebelow that z0 = 0). To be more preise it is assumed that the equation (2.1) hasthe view(6.1) �tu = a�xu+Bu� ~f(u)where ~f 2 C2(Rk ;Rk ) suh that ~f(0) = ~f 0(0) = 0, the matrix B 2 L(Rk ;Rk )(B = �f 0(z0) � �0) and the spetrum �(L) of the linearization L := �x + Bsatis�es the assumption(6.2) �(L) \ fRe z > 0g 6= ?The main aim of this Setion is to show that the assumptions (6.1) and (6.2) aresuÆient for obtaining the lower bounds of the entropy of the attrator of the sametype as the upper ones obtained in previous Setion.As usual we start with studying the linear nonhomogeneous problem(6.3) �tv �Lv = h(t)whih orresponds to the linearization of (6.1) at u � 0. To this end we need thefollowing funtional spaes.De�nition 6.1. Let  2 R. Then the spae L (E), where E is a ertain Banahsubspae of distributions D0(Rn ), is de�ned by the following expression:(6.4) L (E) := fu 2 L1lo(R� ; E) : kukL(E) := supt�0 e�tku(t)kE <1gLemma 6.1. Let the exponent  > Re�(L). Then for every h 2 L (Lqb(Rn )) theequation (6.3) possesses a bakward solution u(t), t � 0 whih is unique in the lassu 2 L (W 2��;qb (Rn )). Thus, a linear operator(6.5) T : L (Lqb)! L (W 2��;qb ); u(t) := (Th)(t)is well de�ned for every � > 0. Moreover, there is a positive exponent " > 0 suhthat(6.6) k(Th)(t); B1x0kq2��;q �� C� sups2(�1;t℄ e(+")(t�s)� supx2Rn e�"jx�x0jkh(s); B1xkq0;q�29



where the onstant C� is independent of x0 and t.Proof. Note that due to the smoothing property for solutions of the linear equation(6.3) (see Propositions 2.1, 2.2 and Theorem 2.3) it is suÆient to dedue theestimate (6.6) only for W 1;2-norm in the left-hand side (instead of W 2��;q-norm).Note also that without loss of generality we may assume that  = 0.Let us onsider for the �rst the ase where h 2 L0 (L2(Rn )) (the general ase willbe redued below to this one). It is well known (see e.g. [30℄) that the operator Lgenerates an analyti semigroup in L2(Rn ) and onsequently, due to the spetralmapping theorem, �(eL)nf0g = e�(L) (see e.g. [9℄). Note also that aording toour assumption Re�(L) < 0 ( = 0!) therefore there is a positive � > 0 suh thatRe�(L) < �2�. Thus, the spetral radius of the exponent eL satis�es the inequality(6.7) r(eL) � e�2� < 1and onsequently, the Duhamel formula(6.8) v(t) := Z t�1 eL(t�s)h(s) dsde�nes a solution v 2 L0 (L2(Rn )) whih satis�es the estimate(6.9) kv(t)kL2(Rn) � C sups2(�1;t℄ e��(t�s)kh(s)kL2(Rn); t � 0Moreover, this solution is unique in the lass L0 (L2).The estimate (6.9) together with a standard (L2;W 1;2)-smoothing property forthe solutions of (6.3) yield(6.10) kv(t)k1;2 � C1 sups2(�1;t℄ e��(t�s)kh(s)k0;2It is onvenient for us to write the last estimate in the following equivalent form:(6.11) sups2(�1;t℄ e��(t�s)kv(s)k1;2 � C2 sups2(�1;t℄ e��(t�s)kh(s)k0;2In order to redue the general ase h 2 L0 (L2b) to the one onsidered above we �xan arbitrary x0 2 Rn and introdue a new unknown funtion wx0(t) := v(t)~�";x0 ,where ~�";x0(x) := e�"(1+jx�x0j2)1=2 and " > 0 is a small parameter whih will bespei�ed below. Note that the weight funtions ~�";x0 are equivalent to �";x0 butsmooth and satisfy the following onditions(6.12) jrx ~�";x0 j � C"~�";x0 ; jD2 ~�";x0 j � C"2 ~�";x0It is not diÆult to verify that the funtion wx0 satis�es the equation(6.13) �twx0 �Lwx0 = ~�";x0h+K1(x)wx0 +K2(x)rxwx0 := hx0(t)Moreover, the estimates (6.12) imply that jKi(x)j � C2".30



Evidently hx0 2 L0 (L2), onsequently the estimate (6.11) yields(6.14) sups2(�1;t℄ e��(t�s)kwx0(s)k1;2 � sups2(�1;t℄ e��(t�s)khx0(s)k0;2 �� C3 sups2(�1;t℄ e��(t�s)k�";x0h(s)k0;2 + C3" sups2(�1;t℄ e��(t�s)kwx0(s)k1;2Fixing in (6.14) " > 0 small enough we derive thatkv(t); B1x0k1;2 � C sups2(�1;t℄ e��(t�s)k�";x0v(s)k1;2 �� C1 sups2(�1;t℄ e��(t�s) supx2Rn��"=2;x0(x)kv(s); B1xk1;2	The estimate (6.6) is proved. Applying the operator supt2R� e�t supx02Rn to theboth sides of the inequality (6.6) we derive, using (1.4) that(6.15) kvkL(W 2��;qb ) � C5khkL(Lqb)Lemma 6.1 is proved.Corollary 6.1. Let the assumptions of Lemma 6.1 hold and let � be a weightfuntion whih satis�es (1.1) with a suÆiently small rate of growth. Then theoperator T onstruted in Lemma 6.1 is bounded as the operator from L (Lqb;�) toL (W 2��;qb;� )Indeed, this assertion is an immediate orollary of (6.6) and (1.4).Let us study now the homogeneous problem (6.3) (the ase h � 0).Lemma 6.2. Let the spetrum of L satisfy the assumption (6.2). Then there exist > 0, � > 0, �0 2 Rk , e 2 Rk and the operator P : B�;�0 ! L (W 2;qb (Rn ; C k ))(where the spae B�;�0 := B �;�0 (Rn ; C ) is de�ned by (4.15)) suh that1. For every u0 2 B�;�0 (Rn ) the funtion v 2 L (W 2;qb (Rn )) de�ned by v(t) :=P(u0)(t), t � 0 is a solution of (6.3) with h � 0.2. 2 > Re�(L).3. Let S(u0) := P(u0)(0) and let �ez := z:ejej2 is the orthogonal projetion tothe vetor e, then �eS(u0) = u0 for every u0 2 B�;�0 .4. For every N 2 R+ and u0 2 B�;�0 the following estimate holds(6.16) kP(u0)(t); B1x0k2;q � CNet supx2Rn� 1(1 + jx� x0j2N )1=2 ku0; B1xk0;1�Moreover, the onstant CN is independent of x0 2 Rn .Proof. Applying the x-Fourier transform to homogeneous equation (6.3) we willhave the equation(6.17) �tbv(t)� bL(�)bv(t) = 0where bL(�) := �aj�j2 +B. Note, that the assumption (6.2) implies that there is apoint �0 2 Rk and b�0 2 �( bL(�0)) suh that Re b�0 > 0. Moreover, without loss of31



generality we may assume that Re�( bL(�)) < b�0 + " for every � 2 Rk , where " > 0is small enough to satisfy " < Re b�0=3.Let us denote by b�(�) the spetrum of �( bL(�)). Then (sine the penil bL(�) ispolynomial with respet to �) b�(�) is an analyti funtion with respet to � on theorresponding k-sheeted Riemann surfae. Moreover, without loss of generality wemay assume also that �0 6= 0 and is not a branh point for this funtion. Denote byb�0(�) the analyti branh of b�(�) in the neighborhood of �0 suh that b�0(�0) = b�0.Thus, we have proved that there exists a neighborhood Br0�0 of �0 and smoothfuntions b�0 : Br0�0 ! C and e0 : Br0�0 ! C k suh that(6.18) bL(�)e0(�) = b�0(�)e0(�); e0(�) 6= 0Evidently, we may �x r0 > 0 in suh a way that Re b�0(�) > Re�0 � " for every� 2 Br0�0 and r0 < j�0j. Moreover, sine e0(�0) 6= 0 then either Re e0(�0) 6= 0 orIm e0(�0) 6= 0. De�ne e := Re e0(�0) if Re e0(�0) 6= 0 and e := Im e0(�0) otherwise.Then it it is possible to normalize the eigenvetor e0(�0) in suh a way that(6.19) �ee0(�) � 1; for every � 2 Br0�0(dereasing the radius r0 if neessary).Let us �x now the exponent � > 0 and the orresponding spae B�;�0 in suh away that supp b� � Br0=2�0 for every � 2 B �;�0 and de�ne the solution of (6.3) by theexpression(6.20) bv(t; �) := eb�0(�)tb�(�)e0(�)We laim that the operator P : � ! v, where  = Re b�0 � ", de�ned by (6.20)satis�es all assumptions of the Lemma.Indeed, de�ne a ut-o� funtion  2 C10 (Rn ) suh that  (�) � 1 if � 2 Br0=2�0and  (�) = 0 if � =2 Br0�0 . Then the formula (6.20) an be rewritten in the followingequivalent form:(6.21) bv(t; �) = et	(t; �)b�(�); � 2 Rkwhere 	(t; �) := e(b�0(�)�b�0+")t (�)e0(�). Moreover, it is not diÆult to verify thatdue to our onstrution of funtions  ; b�0 and e0(6.22) ZRn jDN	(t; �)j2 d� � CNuniformly with respet to t 2 R� . Thus, the operator P an be represented as aonvolution operator(6.23) P(u0)(t) = et �F�1� 	(t; �)� � u0; u0 2 B�;�0Moreover, it follows from (6.22) that the onvolution's kernel K(t; x) in (6.23)satis�es the estimate(6.24) jK(t; x)j := j(F�1� 	(t; �)(x)j � CN 1(1 + jxj2N )1=232



for every N 2 R+ and onsequently(6.25) jv(t; x0)j � ~CNet supx2Rk ku0; B1xk0;1(1 + jx� x0j2N )1=2The estimate (6.16) is an immediate orollary of (6.25) and the smoothing propertyfor the linear equation (6.3). (Note that this estimate implies partiularly thatthe operator P is really a bounded operator from B�;�0 to L (W 2;qb )). The restproperties of P announed in Lemma 6.2 are evident. Indeed, the fat that forevery u0 2 B �;�0 v := Pu0 is a solution of (6.3) follows from the representation(6.20). The seond assertion is a orollary of our hoie of the exponent " (2 =2(b�0� ") > b�0+ " > Re�(L), beause " < b�0=3) and the third one is a orollary ofthe normalization (6.19). Lemma 6.2 is proved.Corollary 6.2. Let the assumptions of Lemma 6.2 hold. Then for every weightfuntion � with a polynomial rate of growth (see (1.18)) the following estimate isvalid:(6.26) kP(u0)(t)kW 2;qb;� (Rn) � Cetku0kL1b;�1=q (Rn); u0 2 B �;�0where the onstant C is independent of the onrete hoie of the weight � satisfy-ing (1.18).Indeed the assertion of the lemma is an immediate orollary of (6.16) and (1.19).Reall we have onstruted the omplex valued solution P(u0) of the equation(6.3) but we need in the following only the real valued solutions of this equa-tion. Sine the operator L has real oeÆients then ReP(u0) is the appropriatereal-valued solution. Moreover, the assertions of Lemma 6.2 remain valid for thisoperator exept of p. 3, whih should be replaed by(6.27) �eS(u0) = Reu0; for every u0 2 B �;�0Note however, that Reu0; u0 2 B�;�0 if and only if u0 � 0 (due to the fat that byde�nition supp bu0 � Br0�0 and r0 < j�0j. Moreover, the following is true.Proposition 6.1. Let pn� < j�0j. Then a funtion u0 2 B�;�0 (R; C ) is uniquelydetermined by it's real part Reu0. Moreover, for every N 2 R+ the followingestimate is valid:(6.28) ju0(x0)j � CN supx2Rn kReu0; B1xk0;1(1 + jx� x0j2N )1=2where the onstant CN is independent of x0 2 Rn and onsequently the spaes BRe�;�0and B �;�0 are isomorphi. We denote this isomorphism by R.Proof. Indeed, sine u0 2 B�;��0 and pn� < j�0j thensupp bu0 \ suppu0 = ?Let  (�) 2 C10 (Rn ) be a ut-o� funtion, suh that  (�) � 1 if � 2 �0 + [��; �℄nand  (�) � 0 if � 2 ��0 + [��; �℄n and let K(x) := F�1�!x . Then(6.29) u0 = 2K �Reu0and jK(x)j � CN (1 + jxj2N )�1=2. The estimate (6.28) is an immediate orollaryof (6.29). Proposition 6.1 is proved.We will write below P instead ReP and S instead of ReS where it will notlead to misunderstanding. 33



Corollary 6.3. Let � be a weight funtion with the polynomial rate of growth (see(1.18)) and let the assumptions of Lemma 6.2 hold. Then the following estimate isvalid:(6.30) ku0kL1b;� � CkSu0kL1b;� ; u0 2 B�;�0where Su0 := (RePu0)(0).Indeed, the assertion of this orollary follows from (6.27) (6.28) and (1.19).We are in a position now to formulate the main tehnial result of this Setion.Theorem 6.1. Let the assumptions of Theorem 3.1 be valid and let in addition theequation (2.1) an be represented in the form (6.1) with the exponentially unstablelinear part (the assumption (6.2) is also assumed to be satis�ed). Then there existsr > 0 and a C1-map(6.31) U0 : B(0; r; B�;�0 (Rn ; C )) ! Awhere B(0; r; B�;�0 ) is a r-ball in the spae B �;�0 entered in 0 and the onstants�; �0 are the same as in Lemma 6.2, and for every u0 2 B(0; r; B�;�0 ) the followingestimate is valid(6.32) kU0(u0)� S(u0)k�b(Rn) � Cku0k2L1b (Rn)Moreover, this map is a Lipshitz ontinuous embedding in the loal topology in thefollowing sense: for every N 2 R+ and every x0 2 Rk we have the estimates(6.33) 8<: kU0(u1)� U0(u2); B1x0k2;q � CN supx2
 ku1�u2;B1xk0;1(1+jx�x0j2N )1=2ku1 � u2; B1x0k0;1 � CN supx2
 kU0(u1)�U0(u2);B1xk2;q(1+jx�x0j2N )1=2whih are valid for every u1; u2 2 B(0; r; B�;�0 ).Proof. The proof of this theorem is based on the impliit funtion theorem and onthe following lemma.Lemma 6.3. Let f 2 C2 satis�es f(0) = f 0u(0) = 0 and let the exponent � > 0be �xed in suh a way that the embedding W 2��;q � C holds. Then the Nemitskijoperator Fu = f(u) belongs to the spae C1(L (W 2��;qb );L2 (Lqb)).The assertion of this lemma an be veri�ed in a diret way (see [36℄, for example).Now we are going to �nd the bakward solutions of the problem (6.1) near z0 = 0equilibria point using the impliit funtion theorem. To this end we rewrite thisequation in the form �tu�Lu = � ~f(u); t � 0Let us �x  suh as in Lemma 6.2, � as in Lemma 6.3 and onsider the equation(6.34) u+ T2 ~f(u) = Pu0; u 2 L (W 2��;qb )where u0 2 B�;�0 and � satis�es the onditions of Lemma 6.2. Note that everysolution of (6.34) is simultaneously a solution of the equation (6.1) hene it issuÆient to solve (6.34) in L (W 2��;qb ). 34



To this end we introdue a funtion F : L (W 2��;qb ) � B�;�0 ! L (W 2��;qb ) byformula F(u; u0) = u+ T2 ~f(u)�Pu0It follows from Lemmata 6.1, 6.2 and 6.3 that the funtion F belongs to thelass C1(L (W 2��;qb ) � B �;�0 ;L (W 2��;qb )) and DuF(0; 0) = Id. Hene due tothe impliit funtion theorem (see [31℄ for instane) there exists a neighborhoodB(0; r; B�;�0 ) and a C1-funtionU : B(0; r; B�;�0 )! L (W 2��;qb )suh that F(U(u0); u0) � 0 and onsequently U(u0)(t) is a bakward solution ofthe problem (6.1). The equation (6.34) and Lemmata 6.1{6.3 imply now that(6.35) kU(u0)�Pu0kL2(W 2��;qb ) � Ck ~f(U(u0))kL2(Lqb) �� C1kU(u0)k2L(W 2��;qb ) � C2ku0k2B�;�0Reall that the funtion u(t) := U(u0)(t) satis�es the equation (6.1). Consequently,due to the smoothing property for the nonlinear equation (6.1) (see Proposition 2.2and the end of the proof of Theorem 2.1) and due to the fat that ~f(0) = 0 wederive that ku(t+ 1)k�b � Q(ku(t)kW 2��;qb )ku(t)kW 2��;qband therefore(6.36) kU(u0)kL(�b) � Q(kU(u0)kL0(W 2��;qb (
))kU(u0)kL(W 2��;qb ) � Cku0kB�;�0for every u0 2 B(0; r; B�;�0 ). Analogously, the funtion w(t) := U(u0)(t) � Pu0satis�es the equation �tw(t) � a�xw(t) �Bw(t) = � ~f(u(t))Applying the smoothing property to this equation and using (6.36) and the fatthat ~f(0) = ~f 0(0) = 0 we dedue from (6.35) that(6.37) kU(u0)�Pu0kL2(�b) � CkU(u0)�Pu0kL2(W 2��;qb )++ CkU(u0)k2L(W 2��;qb ) � C1ku0k2B�;�0Let us de�ne now U0(u0) = U(u0)��t=0. Then (6.37) together with the de�nitionof S imply the estimate (6.32). The assertion U0(B(0; �0; B�;�0 )) � A followsimmediately from desription (3.2) of the attrator A and from the fat that thesolution u(t) = U(u0)(t) of the problem (6.1) whih is de�ned for the �rst only fort � 0 an be extended due to Theorems 2.1 and 2.2 to a omplete solution u(t),t 2 R and u(0) = U0(u0).Thus, it remains to verify the estimates (6.33). Let u10; u20 2 B(0; r; B�;�0 ),ui(t) := U(ui0)(t) be the orresponding bakward solutions of (6.1), v0 := u10 � u20and v(t) := u1(t)� u2(t). Then this funtion satis�es the equation(6.38) v + T2( ~f(u1)� ~f(u2))�Pv0 = 035



Let us �x N 2 R+ , x0 2 Rn and the orresponding weight funtion �N;x0(x) =(1+jx�x0j2N )�1=2. The equation (6.38) together with Lemma 6.1 and Corollary 1.4imply that(6.39) kv �Pv0kL(W 2��;qb;�N;x0 ) � CNk ~f(u1)� ~f(u2)kL2(Lqb;�N;x0 )where CN is independent of x0.Reall that ~f 2 C2 and ~f(0) = ~f 0(0) = 0, onsequently(6.40) j ~f(u1)� ~f(u2)j � Q(ju1j+ ju2j)(ju1j+ ju2j)ju1 � u2jfor a some monotoni funtion Q. The estimates (6.40) and (6.36) imply that(6.41) k ~f(u1)� ~f(u2)kL2(Lqb;�N;x0 ) � bQ�ku1kL0(W 2��;qb ) + ku2kL0(W 2��;qb )��� �ku1kL(W 2��;qb ) + ku2kL(W 2��;qb )� kvkL(W 2��;qb;�N;x0 ) �� bQ(2Cr)2CrkvkL(W 2��;qb;�N;x0 )for every B(0; r; B �;�0 ). Dereasing r if neessary we may assume that(6.42) k ~f(u1)� ~f(u2)kL2(Lqb;�N;x0 ) �� Æ=CN �kv �Pv0kL(W 2��;qb;�N;x0 ) + kPv0kL(W 2��;qb;�N;x0 )�where Æ = Æ(r) an be �xed arbitrarily small (if r > 0 is small enough). Theestimates (6.39) and (6.42) yield that(6.43) kv �Pv0kL(W 2��;qb;�N;x0 ) � ÆkPv0kL(W 2��;qb;�N;x0 )Applying (6.26) to the estimate (6.43) (and assuming that r is suÆiently smallthat Æ < 1=2) we derive that(6.44) kvkL(W 2��;qb;�N;x0 ) � C2kv0kL1b;�N=q;x0Note that the funtion v(t) is a solution of (2.57), onsequently due to (6.26), (6.44)and due to the smoothing property (2.61)(6.45) kU0(u10)� U0(u20)k�b;�N;x0 � kU(u10)� U(u20)kL(W 2��;qb;�N;x0 ) �� CkvkL(W 2��;qb;�N;x0 ) � C1kv0kL1b;�N=q;x0Sine the onstant C1 in (6.45) is independent of x0 then the �rst estimate of(6.33) is an immediate orollary of this estimate. Thus, it remains to prove onlythe seond one. In order to do so we reall that �eSu0 � Reu0 (see Lemma 6.2)and onsequently (due to (6.30))(6.46) kSv0kW 2��;qb;�N;x0 � CkSv0kL1b;�N=q;x0 �� C1kRe v0kL1b;�N=q;x0 � C2kv0kL1b;�N=q;x036



The estimates (6.43) and (6.26) imply that(6.47) kSv0kW 2��;qb;�N;x0 � kv(0)k�b;�N;x0 + CÆkv0kL1b;�N=q;x0Combining (6.46) and (6.47) and �xing Æ > 0 in suh a way that CÆ < C2=2 we�nally obtain that(6.48) kv0kL1b;�N=q;x0 � C3kv(0)k�b;�N;x0Theorem 6.1 is proved.Corollary 6.4. Let the assumptions of Theorem 6.1 be valid and let � be a weightfuntion with the polynomial rate of growth (see (1.18)). Then the map U0 real-izes the Lipshitz ontinuous homeomorphism between B(0; r; B �;�0 ) and it's imageU0(B(0; r; B �;�0 )) in the following sense:(6.49) C1ku10 � u20kL1b;� � kU0(u10)� U0(u20)k�b;�q � C2ku10 � u20kL1b;�Indeed, the estimate (6.49) is an immediate orollary of (6.33) and (1.19).Remark 6.1. Reall that the spaes B � and B�;�0 are isomorphi and the mul-tipliation operator G�0u0 := ei�0:xu0 realizes this isomorphism. Moreover, sinejei�0:xj = 1 then this isomorphism preserves the norms k�; BRx0k0;1, partiularlyG�0B(0; r; B� ) = B(0; r; B�;�0 ) and the operator(6.50) ~U0 := U0 Æ G�0 : B(0; r; B� )! Arealizes a Lipshitz ontinuous embedding whih satis�es the estimates (6.49)Corollary 6.5. Let fTh; h 2 Rng be group of spatial shifts: (Thu)(x) := u(x+ h)and let K := B(0; r; B � (Rk ; C )), where r is the same as in Theorem 6.1. Then,evidently, ThA = A and ThK = K . Moreover the map ~U0 : K ! A ommutes withthis group:(6.51) Th ~U0(u0) = ~U0(Thu0); for every h 2 RnIndeed, the assertion (6.51) is an immediate orollary of our onstrution of themap ~U0 and of the uniqueness part of the impliit funtion theorem.Corollary 6.6. Let u10; u20 2 B(0; �; B �;�0 ) and � � r (where r; �; �0 are the sameas in Theorem 6.1). Then for every R > R0(6.52) kU0(u10)� U0(u20)kW 2�Æ;pb (BR0 ) � LkRe(u10 � u20)kL1(BR0 ) � C�2where C and L are independent of R.Indeed,kU0(u10)� U0(u20)k�b(BR0 ) �� kSu10 � Su20k�b(BR0 ) � kU0(u10)� Su10k�b(Rn) + kU0(u20)� Su20k�b(Rn) �� LkSu10 � Su20kL1(BR0 ) � C1(ku10k2B�;�0 + ku20k2B�;�0 ) �� LkRe(u10 � u20)kL1(BR0 ) � 2C1�2Here we have used the fat that �eSu0 = Reu0.Now we are in a position to obtain the lower bounds for the "-entropy of theattrator A of the equation (6.1). 37



Theorem 6.2. Let the assumptions of Theorem 6.1 hold. Then the attrator A ofthe problem (6.1) possesses the following entropy estimates:(6.53) C2Rn ln 1" � H " �A;W 2;qb (BR0 )� � C1(R +K ln 1" )n ln 1" ; " � "0 < 1Moreover, for every Æ > 0 there exists CÆ > 0 suh that(6.54) CÆ �ln 1"�n+1�Æ � H " �A;W 2;qb (B10)� � C �ln 1"�n+1Proof. Indeed, let " > 0 be small enough, � = � "2CL�1=2 � r and funtions v10 ; v02 2B(0; �; BRe�;�0 ) be suh that(6.55) kv10 � v20kL1(BR0 ) � "=LThen it follows from (6.52) that(6.56) kU0(Rv10)� U0(Rv20)kW 2;qb (BR0 ) � "=2where R is the isomorphism onstruted in Proposition 6.1.The estimates (6.55),(6.56) together with the fat that U0(Rvi0) 2 A imply that(6.57) H "=4 �A;W 2;qb (BR0 )� � H "=L �B(0;� "2CL�1=2 ; BRe�;�0 ); Cb(BR0 )� == H (2C"=L)1=2 �B(0; 1; BRe�;�0 ); Cb(BR0 )�The estimates (6.53) and (6.54) are an immediate orollaries of (4.13) and (4.14)(see also Remark 4.2) and Theorem 5.1. Theorem 6.2 is proved.Corollary 6.7. Let the assumptions of Theorem 6.2 hold. Then(6.58) 0 < C1 ln 1" � H "(A) � C2 ln 1"and onsequently(6.59) 0 < C1 � bhsp(A) � C2 <1x7 The spatial omplexity of the attrator and spatial haos.In this Setion we ontinue to study the attrator of the spatially homogeneoussystem (6.1) in 
 = Rn under the assumptions of Theorem 6.1. Reall that thegroup fTh; h 2 Rng of spatial shifts ats on the attrator of (6.1)(7.1) ThA = A; (Thu)(x) := u(x+ h); h 2 RnThe main aim of this Setion is to study the ation of this group on the attratorfrom the dynamial point of view. Under this approah the semigroup (7.1) will betreated as a dynamial system with multidimensional 'time' h 2 Rn . (Note that in38



the partiular ase n = 1 we obtain a usual dynamial system with one-dimensionaltime.)As a simple orollary of the estimates obtained in the previous Setion (Theo-rem 6.2) we verify that the topologial entropy hsp(A) of the semigroup (7.1) isin�nite and de�ne a new quantitative harateristi bhsp(A) of the omplexity ofdynamis whih is ourred to be �nite and positive for the ase of (7.1).Reall that the usual way to indiate the haoti behavior of a dynamial systemTh : A ! A is to �nd a losed invariant subset M � A in the orresponding phasespae and onstrut a homeomorphism � :M !M suh that(7.2) � : (Th��M ;M)! ( bTh;M); ; bTh := � Æ Th Æ ��1where ( bTh;M) is a some model example of the dynamial system the haoti be-havior of whih is evident. Note also that usually the homeomorphism (7.2) isonstruted only for the appropriate disrete subgroup of Th and the model exam-ples ( bTh;M) are the appropriate Bernulli shifts (see e.g. [21℄).It is worth to emphasize that the (multidimensional) symboli dynamis with�nite number of symbols (Bernulli shifts) are not adequate in order to understoodthe spatial dynamis (7.1) beause the topologial entropy of suh shifts is �nitebut in our situation we have the dynamis with the in�nite topologial entropy.That is why we introdue below a new model example of haos ( bTh;M) whih islose to the standard Bernulli shifts but adopted to the ase of in�nite topologialentropy and onstrut the Lipshitz ontinuous embedding of this model to (7.1).We start our exposition with the following de�nition.De�nition 7.1. Let �(x) > 0, � 2 Cb(Rn ) be a weight funtion whih satis�eslimjxj!1 �(x) = 0 and let A be a ompat set in �b;� invariant with respet to Thation. Then for every R 2 R+ we de�ne a new metri on A by formula(7.3) dR;�(x; y) := suph2[�R;R℄n kThx� Thyk�b;� ; x; y 2 ADe�ne now the following harateristis:hsp(A; �) = hsp(A; �; Th) := lim"!0 lim supR!1 1(2R)n H " (A; dR;�)(7.4) bhsp(A; �) := lim sup"!0 1ln 1=" lim supR!1 1(2R)n H " (A; dR;�)(7.5)Remark 7.1. The quantity (4.4) oinide with the de�nition of the topologialentropy for the group Th : A ! A (adopted to the n-dimensional ase) (see e.g.[21℄) and (7.5) is one of possible generalizations of this onept for the ase wherethe topologial entropy is in�nite. That is why we will all (7.5) as the modi�edtopologial entropy.The following simple lemma is very important for our purposes.Lemma 7.1. Let the above assumptions hold. Then for every � suh as in De�-nition 7.1(7.6) hsp(A; �) = hsp(A) := lim"!0 lim supR!1 1(2R)n H " (A;W 2;qb ([�R;R℄n))39



and analogously(7.7) bhsp(A; �) = hsp(A) := lim"!0 1ln 1=" lim supR!1 1(2R)nH " (A;W 2;qb ([�R;R℄n))Partiularly these quantitatives are independent of the hoie of the weight �.Proof. Indeed, sine �(x) ! 0 as jxj ! 1 then for every " > 0 there is L = L(")suh that �(x) < " for jxj > L("), onsequently(7.8) H " (A; dR;�) � H "=C (A;W 2;qb ([�R� L("); R+ L(")℄n)for the appropriate C whih is independent of R. Therefore(7.9) hsp(A; �) � hsp(A) and bhsp(A; �) � bhsp(A)The opposite inequalities follow from the evident estimate(7.10) suph2[�R;R℄n �(x + h) � �(0) > 0; for jxij � RLemma 7.1 is proved.Remark 7.2. It is well known (see e.g. [21℄) that the topologial entropy hsp(A)depends only on the topology on A and independent of the hoie of the metripreserving the topology. Note, however, that the modi�ed topologial entropybhsp(A) does not possess this property and rigorously speaking is not a topologialinvariant.Note also that bhsp is evidently a Lipshitz invariant, i.e. preserves under theLipshitz ontinuous homeomorphisms. Moreover, if � is Holder ontinuous withthe Holder onstant 0 < � < 1 then(7.11) bhsp(�(M)) � 1�bhsp(M)(ompare with the fratal dimension).The following theorem justi�es our hoie of generalization of the topologialentropy.Theorem 7.1. Let the assumptions of Theorem 6.2 be valid and let A be theattrator of the equation (6.1). Then the group fTh; h 2 Rng of spatial shifts on theattrator has the in�nite topologial entropy(7.12) hsp(A) =1Moreover, the modi�ed topologial entropy of it is �nite and stritly positive:(7.13) 0 < C1 � bhsp(A) � C2 <1Indeed, the assertion of the theorem is an immediate orollary of Corollary 6.7and Lemma 7.1.Let us study now the spatial haos generated the ation of fTh; h 2 Rng onthe attrator A. We give for the �rst the model onstrution (7.2) for the ase ofontinuous dynamis (h 2 Rn ) and after that we simplify this model for the aseof disrete dynamis (h 2 Zn). 40



Theorem 7.2. Let the assumptions of Theorem 6.1 be valid and let r and � bethe same as in Theorem 6.1. Let also K be the ball B(0; r; B � ) endowed by theloal topology of L1lo(Rn ). Then the map ~U0 : K ! A de�ned in (6.50) realizes ahomeomorphism(7.14) ~U0 : (Th;K ) ! (Th; ~U0(K ))Moreover, this homeomorphism is Lipshitz ontinuous if we endowed the spaes Kand A by the topology L1b;� and �b;�q respetively (where � is an arbitrary weightfuntion with the polynomial rate of growth) and onsequently this homeomorphismpreserves the modi�ed topologial entropy:(7.15) 0 < C1 � bhsp(K ) = bhsp( ~U0(K )) � C2 <1Indeed, the assertion of this theorem is an immediate orollary of Theorem 6.1and Corollaries 6.4 and 6.5.Thus, the r-ball K of the spae B� together with the group of spatial shiftsfTh; h 2 Rng ating on it an be onsidered as a model example for the topologialdesription of the spatial haos in the reation-di�usion systems in unboundeddomains. Note however that this model is rather ompliated by itself and it seemsreasonable to simplify it. To this end we restrit ourselves to onsider only theation of a disrete subgroup fTh; h 2 Zng of the group of spatial shifts and usethe Kotelnikov-Cartrait interpolation formula for representing the funtions fromB� (see e.g. [22℄, [37℄).Proposition 7.1. Every funtion u(x) from the lass B�0 an be represented inthe following form:(7.16) u(x) = �l2Znu(Æk)g�;k(x); � > 0where Æ = ��0+� and(7.17) g�;k(x) := �nj=1 sin �(xj � Ækj) � sin(�0 + �)(xj � Ækj)�(�0 + �)(xj � Ækj)2Moreover, g�;k 2 B�0+2�.Let D := fz 2 C : jzj � 1g be a unitary disk on the omplex plane and letM := DZn be the spae of all funtions v : Zn ! D . We endow this spae by aFrehet topology generated by the following system of seminorms:(7.18) kv;BR0 k0;1 := supl2Zn;jlj�R jv(l)jand denote the spae thus obtained by Mlo (It is evident that Mlo is a om-pat metri spae and it's topology oinide with the Tikhonov's topology on theDesartes produt DZn). The spaes Mb and Mb;� where � is a weight funtionan be de�ned analogously.Fix now �0; � > 0 in suh a way that �0 +2� < � and de�ne a map � :M! B�by the expression(7.19) �(v) := Xl2Znv(l)g�;l(x)where the funtions g�;l are de�ned in (7.17). Then the following is true.41



Lemma 7.2. Let the above assumptions hold and let 0 < � < 1. Then(7.20) j�(v)(x)j � C supl2Zn jv(l)j ��nj=1(1 + jxj � lj j2)���=2Moreover, for every R > pn(7.21) k�(v); BÆR0 k0;1 � kv;BR0 k0;1Proof. Indeed, the estimate (7.21) follows immediately from the fat that �(v)(Æl) =v(l) for every l 2 Z (see (7.16) and (7.17)).The proof the estimate (7.20) is based on the evident estimate(7.22) jg�;l(x)j � C�nj=1(1 + jxj � lj j2) ; l 2 Zn; x 2 Rnand also an be veri�ed in a diret way.Corollary 7.2. Let the above assumptions hold. Then there is a onstant C =C(�0; �) suh that(7.23) k�(M)kL1b (Rn) � CMoreover, for every weight funtion � with a polynomial rate of of growth � < 1(see (1.18)) the following estimate is valid: Then(7.24) C1kvkMb;� � k�(v)kL1b;� � C2kvkMb;�The assertions of this orollary follow from the estimates (7.20), (7.21) and (1.19).Let now �; r > 0 be the same as in Theorem 6.1 and 7.2. Then the estimate(7.23) implies that the map(7.25) ~�(v) := rC �(v); v 2Mwhere C is de�ned in (7.23) realizes an embedding M to K . Moreover, the esti-mate (7.24) remains valid for ~� as well and shows that this embedding is Lipshitzontinuous in the appropriate metri.Let us onsider now a disrete subgroup T 0h := fTh; h = Æl; l 2 Nng of thesemigroup of spatial shifts ating on K and on the attrator A of the equation(6.1). De�ne also the ation of this subgroup on the spae M by formula(7.26) (T 0Ælv)(m) := v(m+ l); v 2 M; l;m 2 ZnThen the following is true.Lemma 7.3. Let the above assumptions hold. Then the set ~�(M) is invariant withrespet to the disrete group T 0h and this group ommutes with the map ~� de�ned by(7.25), i.e.(7.27) ~� Æ T 0h = T 0h Æ ~�42



Indeed, the assertion of the lemma is an immediate orollary of the fat that�(v)(Æl) � v(l).Note now that the topologial entropy hsp and the modi�ed topologial entropybhsp an be de�ned analogously to De�nition 7.1 for a disrete groups as well. More-over, the assertions of Lemma 7.1 and Remark 7.2 also remains valid for this ase.Consequently, (due to (7.24)) the map(7.28) ~� : (T 0h;M)! (T 0h; ~�(M)) � (T 0h;K )preserves the modi�ed topologial entropy(7.29) bhsp(T 0h;M) = bhsp(T 0h; ~�(M))Thus, for the ase of disrete group of shifts T 0h, we have onstruted the Lipshitzontinuous embedding of the model dynamial system (T 0h;M) to the dynamialsystem (T 0h;K ). (see (7.2)).Combining this embedding with the embedding, onstruted in Theorem 7.2 weobtain the following result.Theorem 7.3. Let the assumptions of Theorem 7.2 be valid and let T 0h be a disretesubgroup of spatial shifts, h = Æl, l 2 Zn. Then the map � = ~U0 Æ ~� realizes aLipshitz ontinuous (in weighted metris desribed in Corollary 7.2) isomorphismbetween M and �(M) � A whih preserves the ation of the group T 0h:(7.30) � : (T 0h;M)! (T 0h; �(M))and onsequently this homeomorphism preserves the modi�ed topologial entropy:(7.31) 0 < bhsp(M; T 0h) = bhsp(�(M); T 0h)Thus, we have onstruted the Lipshitz ontinuous embedding of the modeldynamial system (T 0h;M) to the dynamial system (T 0h;A), generated by the dis-rete spatial shifts on the attrator A of the equation (6.1). Note, that if we restritourselves to onsider only the subset MN �M of funtions v : Zn! fa1; � � �aNgwhere a1; � � � ; aN 2 D are arbitrary di�erent omplex numbers from the unitaryball, we obtain the standard symboli dynamis with N symbols (multidimensionalBernulli shifts). Consequently Theorem 7.3 admits to embed the symboli dynamiswith N symbols into the disrete spatial shifts of the attrator A for every N 2 N.Moreover, the following theorem shows that an arbitrary finite dimensional (dis-rete) dynamis an be realized as a restrition of the disrete spatial shifts to theappropriate invariant subset of the attrator.Theorem 7.4. Let the assumptions of the previous theorem holds, let K � CN bean arbitrary ompat set in CN , and � : K ! K be a homeomorphism. De�ne adynamial system fGn; n 2 Zg on K by iteration of this homeomorphism(7.32) Gnz := (�)nz; z 2 KThen there exists a homeomorphism � : K ! �(K) � A suh that(7.33) � ÆGn = Tn~p Æ �; n 2 Z43



where ~p := NÆe1 = NÆ(1; 0; � � � ; 0) and Æ is the same as in Theorem 7.3.Proof. Due to Theorem 7.3 it is suÆient to onstrut only the embedding of thissystem to a model one (T 0h;M). Note also that without loss of generality we mayassume that K is a subset of N -dimensional polydis K � DN . Let us de�ne anembedding � : K !M by formula(7.34) �(z)(l1; l2; � � � ; ln) := Gn(z)k; where l 2 Zn;l1 = nN + k; n 2 Z; k 2 f0; 1; � � � ; N � 1g; z 2 K � DNIt is not diÆult to verify that � : K ! �(K) � M is really a homeomorphism(sine Gn : K ! K are homeomorphisms). Moreover, it follows from the de�nitionof � that(7.35) �(Gnz) = TnNe1�(z); z 2 K; n 2 ZThe assertion of the theorem is an immediate orollary of (7.35) and Theorem 7.3.Remark 7.3. For simpliity we have formulated and proved the embedding the-orem 7.4 only for the dynamial system (Gn;K) with one dimensional 'time' butit's generalization for the multidimensional ase is straightforward.x8 The temporal evolution of spatial haos andthe spatial omplexity of individual trajetoriesIn the previous setions we onstrut a number of various invariant with respetto spatial shifts subsets B � A of the attrator the restritions of fTh; h 2 Rng towhih demonstrate the haoti behavior, have in�nite topologial entropy hsp(B) =1, positive modi�ed entropy bhsp(B) > 0 and so on. Note however that all sets thusonstruted are not invariant with respet to the temporal dynamis fSt; t � 0ggenerated by the equation (6.1) (in a fat the image ~U0(K ) onstruted in Theorem7.2 belongs to an exponentially unstable manifold of zero equilibria point). Thus,it seems reasonable to study the spatial omplexity of sets StB, t � 0, where B isa spatially invariant subset of the attrator A.We start with a trivial orollary of the estimates formulated in Theorem 2.3.Lemma 8.1. Let the assumptions of Theorem 6.2 hold and let B be a ompat in�lo invariant with respet to the spatial shifts fTh; h 2 Rng subset of the phasespae �b of the equation (6.1). Then(8.1) hsp(StB) � hsp(B); bhsp(StB) � bhsp(B); t � 0where St : �b ! �b is a semigroup, generated by the equation (6.1).Proof. Indeed, the set B is evidently bounded in �b and onsequently due to theestimate (2.61) and (1.3) the semigroup St is Lipshitz ontinuous in the spae �b;�for every weight funtion whih satis�es the assumption (1.1). But the (modi�ed)topologial entropy does not inrease under the Lipshitz ontinuous mappings (seeRemark 7.2). Lemma 8.1 is proved.The main result of this Setion is the following theorem.44



Theorem 8.1. Let the assumptions of Theorem 6.1 hold and let in addition thematrix a in the equation (6.1) is normal, i.e.(8.2) aa� = a�aLet B be a ompat (in �lo) invariant with respet to fTh; h 2 Rng subset ofthe attrator A. Then the quantitatives hsp(B) and bhsp(B) preserves under thetemporal dynamis:(8.3) hsp(StB) = hsp(B) and bhsp(StB) = bhsp(B); t � 0Proof. The assertion of the theorem is a orollary of the following Lemma whihlaims that the semigroup St is bakward Holder ontinuous on the attrator withthe Holder exponent arbitrary lose to 1.Lemma 8.2. Let the above assertions hold and let u1(t); u2(t) 2 A, t 2 R be twoarbitrary solutions of (6.1) belonging to the attrator. Then for every 0 < � < 1and every �xed T > 0 there is " > 0 and a onstant C = C(�; T; ") suh that(8.4) ku1(0)� u2(0); B1x0k2;q � C supx2
 e�"jx�x0jku1(T )� u2(T ); B1xk�0;2The proof of this Lemma is based on the following onvexity result, formulatedand proved in [2℄.Proposition 8.1 [2℄. Let H be a Hilbert spae and B : D(B) ! H be a linearunbounded operator in it. Let also v 2 C1([t0; t1℄; H)\C([t0; t1℄; D(B)) be a solutionof the following equation:(8.5) �tv �Bv = P (t)v; kP (t)kH!H � P0Assume also that B = B+ +B0� +B00�, where B+ is a symmetri operator and B0�and B00� are skew symmetri operators suh that for every w 2 H(B+w;B0�w)H � �kB+wkHkwkH � �kwk2H ;(8.6) kB00�wk2H � kB+wkHkwkH + �kwk2H(8.7)are satis�ed. Let us de�ne a new funtion(8.8) l(t) := 2 ln ku(t)kH � Z tt0  (s) ds;  (t) := 2(P (t)u(t); u(t))ku(t)k2HThen the following inequality holds for every t0 � t � t1(8.9) l(t) � ��l(t0) + (1� ��)l(t1) + e4(t1�t0)(t1 � t0)2(82 + 4� + 2P 20 )where(8.10) �� := e�4t1 � e�4te�4t1 � e�4t0in (8.10) one takes the negative sign if l(t0) � l(t1) and the positive sign if l(t0) �l(t1). 45



Corollary 8.1. Let the assumptions of Lemma 8.1 hold and let it be known in addi-tion that the solution v(t) is de�ned on (�1; t1℄ and remain bounded: kv(t)kH � K.Then for every � > 0 and t 2 (�1; t1) there is a onstant C = C(t; t1; �;K) suhthat(8.11) ku(t)kH � Cku(t1)k�H ; � := e4(t�t1) � �Proof. Indeed, applying the exponent to the both sides of the inequality (8.9) andtaking into the aount that �2P0(t� t0) � R tt0  (s) ds � 2P0(t� t0) we derive that(8.12) ku(t)kH � C(t; t1; t0)ku(t1)k1���H ku(t2)k��HSine ku(t2)kH � K then (8.12) implies the estimate(8.13) ku(t)kH � C 0(K; t; t0; t1)ku(t1)k�Hwhere � = minf1 � �+; 1 � �+g. Let us �x now t2 = �N where N > 0 is largeenough. Then(8.14) � = 1� �+ = e4t � e�4Ne4t1 � e�4N ! e�4(t1�t)when N ! 1. Therefore, for every � > 0 one an �nd N = N(�), suh that� � e�4(t1�t) � �. Corollary 8.1 is proved.Let us prove Lemma 8.1 now. Indeed, let v(t) := u1(t)�u2(t) then this funtionevidently satis�es the equation(8.15) �tv = a�xv � �0v � l(t)vwhere l(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds. Reall, ui(t) are omplete boundedsolutions belonging to the attrator A, onsequently due to Theorems 2.1 and 3.1kui(t)kCb(Rn) � kuik�b � C and therefore the funtion l(t) is uniformly bounded:kl(t)kCb(Rn) � C1 and C1 is independent of ui.Fix now an arbitrary x0 2 Rn and onsider a funtion wx0(t) := v(t)~�";x0 wherethe weight funtion ~�";x0 is the same as in the proof of Lemma 6.1 and " is a smallparameter. Then it is not diÆult to verify that this funtion satis�es the equation(8.16) �twx0(t)� a�xwx0(t) +K1(x)wx0 (t) +K2(x)rxwx0(t) + l(t)wx0(t) = 0where K1(x)w :=  �x ~�";x0~�";x0 � 2 jrx ~�";x0 j2~�2";x0 !aw(8.17) K2(x)rxw = 2~��1";x0rx ~�";x0 :arxw := 2~��1";x0 nXi=1 �xi ~�";x0a�xiw(8.18) 46



Moreover, it follows from (6.12) thatjKi(x)j+ jrxKi(x)j � C"for the appropriate onstant C.Let us verify now that the equation (8.16) satis�es all assumptions of Lemma8.1. Indeed, let H := [L2(Rn )℄k, Rw := K2(x)rxw,B+ = 1=2(a+a�)�x��0�1=2(R+R�); B0� := 1=2(a�a�)�x; B00� := �1=2(R�R�)and P (t)w := �K1(x)w � l(t)w. Then evidently B+ is symmetri and B0� and B00�are skew symmetri. In order to verify the assumptions (8.6) and (8.7) we ompute�rstly the operator R�:(8.19) R�w := �2~��1";x0rx ~�";x0 :a�rxw � 2rx � �rx ~�";x0��1";x0�a�wand onsequently(8.20) (B+w;B0�w) = 1=4 ((a+ a�)�xw; (a � a�)�xw)�� �~��1";x0rx ~�";x0 :(a� a�)rxw; (a� a�)�xw�++ �rx �rx ~�";x0 ~��1";x0�a�w; (a� a�)�xw�Sine a is normal (see the assumption (8.2)) then the �rst term in the right-handside of (8.21) is equal to zero identially. Integrating by parts in the seond termwe derive that(8.21) �~��1";x0rx ~�";x0 :(a� a�)rxw; (a� a�)�xw� == �1=2�rx(~��1";x0rx ~�";x0)(a� a�)rxw; (a� a�)rxw� � C"krxwk2HIt follows from the interpolation inequality, the regularity theorem for the Laplaeoperator in Rn and from the fat that " > 0 is small enough that(8.22) krxwk2H � CkwkW 2;2(Rn)kwkH � C1kB+wkHkwkHAnd �nally due to the Holder inequality(8.23) �rx �rx ~�";x0 ~��1";x0�a�w; (a� a�)�xw� �� �C"kwkHk�xwkH � �C2"kB+wkHkwkHCombining the estimates (8.20){(8.23) we derive that(B+w;B0�w) � �kB+wkHkwkH ;  = C"Thus, the assumption (8.6) is veri�ed. Let us verify the assumption (8.7). Indeed,sine B00� is a �rst order di�erential operator then due to (8.22)(8.24) kB00�wk2H � C" �krxwk2H + kwk2H� � C1"(kB+wkHkwkH + kwk2H)47



Thus, the assumption (8.7) is also veri�ed.Note also that ui(t) 2 A implies that kwx0(t)kL2(Rn) � K where K is indepen-dent of x0. Thus, all assumptions of Lemma 8.2 and Corollary 8.1 are veri�ed andonsequently aording to (8.11) with t1 = T and t = �1(8.25) kwx0(�1)k0;2 � C("; �; T )kwx0(T )k�0;2here � := e�C"(T+1) � �, where � > 0 an be hosen arbitrarily small and theonstant C is independent of x0.Note also that sine "; � an be hosen arbitrarily small then the Holder exponent� < 1 in (8.25) is arbitrarily lose to 1.The estimate (8.25) immediately implies that(8.26) kv(�1); B1x0k0;2 � C 0(�; "; T ) supx2Rnkv(T ); B1xk�0;2where � is arbitrarily lose to 1 and " = "(�) > 0. The estimate (8.4) is animmediate orollary of (8.26) and of the smoothing property (2.61). Lemma 8.2 isproved.We are in a position now to omplete the proof of Theorem 8.1. To this end wenote that the estimate (8.4) implies that the restrition of ST ��A on the attrator Ais invertible and for every weight funtion � with a polynomial rate of growth andfor every 0 < � < 1 the operator S�1T ��A is uniformly Holder ontinuous with theexponent �(8.27) S�1T : A \ �b;� ! A\�b;��i.e. for every u1; u2 2 A(8.28) ku1 � u2k�b;�� � C(T; �)kSTu1 � STu2k��b;�and onsequently (due to Lemma 7.1 and the estimate (7.11))(8.29) bhsp(B) � �bhsp(STB); and hsp(B) = hsp(STB)Passing to the limit � ! 1 in (8.29) and taking into the aount the result ofLemma 8.1 we derive (8.3). Theorem 8.1 is proved.Remark 8.1. Reall that we onstrut in Setion 7 the set B = ~U0(K ) � A therestrition of spatial shifts on whih is isomorphi to the model dynamis (Th;K )(or to (T 0h;M) for disrete spatial shifts). The estimate (8.28) implies now that theset STB � A is also homeomorphi to (Th;K ) (or (T 0h;M) respetively). Thus, thespatial haos onstruted in Setion 7 preserves under the time evolution fSt; t 2R+g.Let us study now the spatial omplexity of individual solutions u(t) 2 A of theequation (6.1). To this end we need the following de�nition.De�nition 8.1. Let u0 2 A. Denote by Hsp(u0) the hull of this point with respetto the spatial shifts:(8.30) Hsp(u0) := �Thu0; h 2 Rn��lowhere [�℄�lo means a losure in the spae �lo, and de�ne the quantitatives hsp(u0)and bhsp(u0) by the following expressions:(8.31) hsp(u0) := hsp(Hsp(u0)); bhsp(u0) := bhsp(Hsp(u0))(see De�nition 7.1).The following Corollary shows that the quantitatives (8.31) are onstants alongthe trajetories of (6.1). 48



Corollary 8.2. Let the assumptions of Theorem 8.1 be valid. Then for everyu0 2 A the following is true:(8.32) hsp(Stu0) = hsp(u0); bhsp(Stu0) = bhsp(u0); t � 0Moreover, the quantity bhsp(u0) is �nite for every u0 2 A and there is a point u0 2 Asuh that(8.33) hsp(u0) =1; bhsp(u0) > C > 0Proof. Indeed, the assertions (8.32) are immediate orollaries of Theorem 8.1. Thus,it remains only to verify the existene of a point u0 whih satis�es (8.33). To thisend we reall that due to Theorem 7.3 it is suÆient to �nd a point v0 2 M suhthat it's hull (with respet to disrete shifts group fT 0h; h 2 Zng has a positivemodi�ed topologial entropy. But it is not diÆult to verify that the spae Mpossesses a topologially transitive orbit, i.e., there exists v0 2 M suh that(8.34) M = �T 0hv0; h 2 Zn�MloFixing now u0 := �(v0) � A, where � :M!A is de�ned in Theorem 7.3 we obtaina point of A whih satis�es (8.33). Corollary 8.3 is proved.Remark 8.2. It follows from the proof of Corollary 8.2 that there is a pointu0 2 A with an extremely ompliated spatial struture. Partiularly (T 0h;M) �(T 0h;Hsp(u0)) and onsequently due to Theorem 7.4 any �nite dimensional dynamisan be realized by restriting the disrete spatial shifts group to the appropriatesubset of the hull Hsp(u0) of this point.In onlusion of the paper we illustrate the obtained results on the partiularase of Ginzburg-Landau equation.Example 8.1. Consider the equation(8.35) �tu = (1 + i�)�xu+Ru� (1 + i�)ujuj2�; x 2 Rnwhere u = u(t; x) = u1(t; x) + iu2(t; x) is a omplex valued unknown funtion�; � 2 R, R > 0 and � > 0 (see [25℄ and referenes therein).It is not diÆult to verify that our monotoniity assumption f 0(u) � �C issatis�ed if(8.36) j�j � p2� + 1�the rest of the assumptions of (2.2) are satis�ed for every �; � and � > 1=2. Thegrowth restrition (2.3) is valid for every � if n � 4 and for � < 2=(n� 4) if n > 4.Thus, for n � 4 Theorems 2.1, 2.2 and 3.1 give the existene of solutions for(8.35), their L1-bounds and the attrator's existene if (8.36) is satis�ed (� isarbitrary and � > 1=2).Note that zero equilibria point u � 0 of the equation (8.35) is evidently expo-nentially unstable if R > 0. Thus, the assumptions of Theorem 6.2 is also satis�ed(if n � 4, (8.36) is valid, � > 1=2 and � is arbitrary) and onsequently the entropy49
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