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ABSTRACT. The nonlinear reaction diffusion system in an unbounded domain is stud-
ied. It is proved that under some natural assumptions on the nonlinear term and on
the diffusion matrix this system possesses a global attractor A in the corresponding
phase space. Since the dimension of the attractor is occurred to be infinite we study
the Kolmogorov’s e-entropy of it. The upper and lower bounds of this entropy are
obtained.

Moreover, we give a more detailed study of the attractor for the spatially homo-
geneous RDE in R™. In this case a group of spatial shifts acts on the attractor. In
order to study the spatial complexity of the attractor we interpret this group as a
dynamical system (with multidimensional *time’ if n > 1) acting on a phase space A.
It is proved that the dynamical system thus obtained is chaotic and has the infinite
topological entropy.

In order to clarify the nature of this chaotisity we suggest a new model dynamical
system which generalizes the symbolic dynamics to the case of the infinite entropy
and construct the homeomorphic (and even Lipschitz continuous) embedding of this
system to the spatial shifts on the attractor.

Finally, we consider also the temporal evolution of the spatially chaotic structures
in the attractor and prove that the spatial chaos preserves under this evolution

CONTENTS

Introduction.

§1 The functional spaces.

62 The a priori estimates, existence of solutions, uniqueness.

83 The attractor.

84 Kolmogorov’s e-entropy: definitions and typical exam-
ples.

§5 The entropy of the attractor: the upper bounds.

§6 Infinite dimensional unstable manifolds and lower bounds
of e-entropy.

87 The spatial complexity of the attractor and spatial chaos.

§8 The temporal evolution of spatial chaos and the spatial
complexity of individual trajectories.

1991 Mathematics Subject Classification. 35B40, 35B45.
Key words and phrases. Reaction-diffusion systems, unbounded domains, Kolmogorov’s en-
tropy, spatial chaos.

Typeset by ApS-TEX



INTRODUCTION

In this paper the following quasilinear parabolic boundary problem

0.1) { Ou = alyu — Nou — f(u) +g, x€Q

“|aQ =0, “|t:0 = Uo

in the unbounded domain © (which is assumed to satisfy some natural regularity
conditions formulated in §1) is considered. Here u = (u!,---,u*) is an unknown
vector-valued function, f and g are given functions, Ag > 0 is a positive constant

and a is a given k£ X k-matrix with a positive symmetric part:
(0.2) a+a* >0

The longtime behavior of solutions of (0.1) is of a great interest now. It is well known
that under the appropriate assumptions on the nonlinear term f(u) this behavior
can be described in terms of an attractor A of the corresponding dynamical system
generated by (0.1) (see e.g. [4], [5], [25], [29]). One of the possible choices of these
assumptions is the following one:

1. f e C*(RF RF)
(0.3) 2. f(u)u>-C
3. fllu) > -K

where u.v means the standard inner product in R* (see e.g. [4], [16], and [19]
for the other possibilities). Note that (0.3) is fulfilled for many interesting from
the physical point of view equations such as Chafee-Infante equation, Fitz-Nagumo
system, generalized Ginzburg-Landau equations and other ones.

In the case where the domain €2 is bounded the global attractors for (0.1) have
been constructed and studied under the various assumptions on f, a and g (see [4],
[20], [29] and references therein). Particularly, the attractor’s existence for (0.1)
under the assumptions (0.2) and (0.3) has been proved in [34]. It is also proved
there that if the nonlinearity f satisfies the additional growth restriction

(0-4) [f(W)] <CA+ |ul?), p<1+4/(n—4)

(for n < 4 the exponent p may be arbitrarily large) then the corresponding semi-
group is differentiable with respect to the initial value ug, possesses the L°°-bounds
and the fractal dimension it’s attractor is finite.

In the case where the domain Q is unbounded (e.g. © = R") the situation
becomes much more complicated. In this case even the choice of the appropriate
phase space for (0.1) is a nontrivial problem. Indeed, the phase space L2(f2) (as
in the case of bounded domains) seems to be not adequate because a number of
natural from the physical point of view structures such as e.g. spatially periodic
solutions, travelling waves, etc. are occurred to be out of the consideration. As a
result the global attractor in L*(Q) exists for (0.1) only for very particular cases
(see e.g. [5], [7], [14], [24]). That is why, following to [18], [28], [33], we will consider
the equation (0.1) in the spaces

(0.5) WP (Q) == {uo € D'() : |Juolly i == SUE%HUOHWLP(QOB;O) < oo}
o
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with the appropriate choice of exponents [ and p (here and below Bfo means the
R-ball in R" centered in zo and W'P(V) is a Sobolev space of functions whose
derivatives up to the order [ belong to LP(V')). Roughly speaking the spaces (0.5)
consist of sufficiently regular functions ug(z) which remain bounded when |z| — oo
and contain all structures mentioned above.

To the best of our knowledge the existence of the global attractor for (0.1) for
the unbounded domain 2 = R” has been firstly established in [1] and [5] (for a
scalar case k = 1 and under the great growth restrictions p < min{4/n,2/(n—2)}).
These growth restrictions have been removed later in [17] and [24]. The case of
systems (k > 2) with a scalar diffusion matrix a has been considered in [7], [14],
[15], [32]. Mention also that for the particular cases of (0.1) e.g. for complex
Ginzburg-Landau equations more powerful results have been obtained (see [25] and
references therein).

In the present paper combining the methods of [33] and [34] we establish the
existence of the global attractor for (0.1) under the assumptions (0.2) (which is
much more natural from the reaction-diffusion point of view) and (0.3)-(0.4).

Theorem 1. Let the assumptions (0.2)~(0.4) hold and let g € L{(Q) for a some
q > 2 such that ¢ > n/2. Then for every ug € ®p(Q) := W;’q(ﬂ) N {u0|8Q =0} the
problem (0.1) possesses a unique solution u(t) € ®,(Q) for t > 0 which satisfies the
following estimate:

lu®)lle, < Q(lluolle,)e™ + Q(llgllzy)

where a > 0 is a positive constant and @ is an appropriate monotonic function
which are independent of ug, and consequently the solving semigroup

(0.6) St 1 ®p(Q) = D4(Q), t>0 Spug := u(t)

is well defined for the problem (0.1).
Moreover, this semigroup possesses a bounded in ®,(Q2) and locally compact (=

compact in a local topology of ®10.(Q) := W24(Q)) attractor A.

loc

Note that under the assumptions of Theorem 1 the Hausdorff and fractal di-
mension of the attractor may be infinite (and is occurred to be infinite in many
interesting particular cases) (see e.g. [5], [32] or Th. 3 below) and consequently
there is a problem of finding new quantitative characteristic of the attractor adopted
to the infinite dimensional case. One of possible approaches to handle this problem
which is suggested in [8] is to consider and estimate the Kolmogorov’s e-entropy of
the infinite dimensional attractor A.

Recall, that if K is a precompact set in a metric space M then it can be cov-
ered (due to the Hausdorff criteria) by a finite number of e-balls for every e > 0.
Let N.(K, M) be the minimal number of such balls. Then by definition the Kol-
mogorov’s e-entropy of K in M is the following number:

(0.7) H. (K, M) := In N.(K, M)

It is worth to emphasize that in contrast to the fractal dimension the quantity (0.7)
remains finite for every € > 0 and every precompact set K in M.
The e-entropy of the infinite dimensional uniform attractors for (0.1) in the case
where the domain  is bounded and the external force g depends explicitly on ¢
3



has been studied in [8]. The case of autonomous reaction-diffusion equations in R”
has been considered in [10] and [32]. The entropy for the autonomous and nonau-
tonomous RDE in general case of the unbounded domain Q has been considered
in [15] and [33]. The entropy for damped hyperbolic equations in the unbounded
domain has been investigated in [35] and [36].

It is particularly proved in [33] that in the case where the diffusion matrix a is
scalar the entropy of restrictions A|QmBn possesses the estimate

z0

1
(0.8) He (Ao pr - ®o) < Cvol(@n BEFKIN/2) 1y - e<e <l
z0

where the constants C', K and ¢ are independent of €, R, and z.
In the present paper we extend this estimate to the case of general diffusion
matricies a satisfying (0.2).

Theorem 2. Let the assumptions of Theorem 1 hold. Then the entropy of the
attractor A of (0.1) possesses the estimate (0.8).

Moreover, in the case where ) = R"™ and g = const we obtain the lower bounds

for the entropy of restrictions A pr under the natural assumption that (0.1) pos-
z0
sesses at least one spatially homogeneous exponentially unstable equilibria point.

Without loss of generality one may assume that « = 0 is a such equilibria and
consequently (0.1) has the following view:

(0.9) Ou = al,u + Bu — ¢(u), ¢(0) = ¢'(0) =0

where the matrix B := —f'(0) — Ao.

Theorem 3. Let the assumptions of Theorem 1 hold and let & = R" and (0.1) has
the form (0.9). Assume also that

(0.10) o(aA; +B)N{z€C:Rez>0} # o

Then the entropy of the attractor possesses the following estimates:
1
(0.11) He (A|4n ,®5) > C1R"In—, C; >0, e<g <1
EA €
Moreover, for every p > 0 there is a constant C, > 0 such that

n+l—p
012) B (A gy 1) 2 (1)

€

Note that for the particular case Q& = R™ (0.8) reads
N\N". 1
(0.13) He (A] 5, ®5) < Cs <R+Kln g) In =
zq

Therefore, Theorem 3 shows that the estimate (0.8) is sharp at least in the case
2 = R™. From the other side in the case where the domain  is bounded the
estimate (0.8) yields

H. (A, @) < C'vol(2)In %
4



which reflects the well-known heuristic principle that the equations of mathemat-
ical physics in bounded domains have the finite fractal dimension (and moreover
indicates in a right way the dependence of this dimension on the ’size’ of ). Thus,
the estimate (0.8) may be considered as a natural generalization of this principle
to the case of unbounded domains (see also [15] or [36]).

The rest part of the paper is devoted to a more comprehensive study of the
spatially homogeneous case of the equation (0.1) (2 = R, g = const). In this
case the attractor A possesses an additional structure, namely, it is occurred to be
invariant under the group {7}, h € R} of spatial shifts:

(0.14) Th: A=A ThA=A, heR", (Thuo)(z) :=uo(z+h)

This semigroup can be treated as a dynamical system (with multidimensional 'time’
if n > 1) acting in the phase space A. Thus, in order to study the spatial complexity
(and spatial chaotisity) of A one may investigate the dynamical properties of the
system (0.14).

The phenomena of spatial complexity and spatial chaotisity has been studied e.g.
in [2], [6], [12] for a various particular cases of the equation (0.1). In particular,
the examples which show that the topological entropy of the dynamical system
(0.14) may be positive (and, moreover, that this dynamical system may contain
the symbolic dynamics) has been constructed there. In the present paper we prove
that under the natural assumptions the topological entropy of the dynamical system
(0.14) is infinite.

Theorem 4. Let the assumptions of Theorem 8 hold. Then the spatial dynamical
system (0.14) has the infinite topological entropy: hgy(A) = 0o.

Moreover, we introduce (in Section 7) a new quantitative characteristic of the
dynamics — the modified topological entropy ?Lsp, which occurred to be finite and
positive for the case of (0.14): 0 < ?Lsp(A) < 0.

Thus, the dynamical behavior of (0.14) is occurred to be extremely chaotic. Note
also that in contrast to the case of dynamical chaos, generated by ODE or by PDE
in bounded domains the symbolic dynamics (Bernulli shifts, see e.g. [21]) is not
an adequate model example for understanding the nature of the spatial chaotisity
in (0.14) because the topological entropy of symbolic dynamics is finite. In order
to overcome this difficulty a new model dynamical system which generalizes the
Bernulli shifts and adopted to the case of infinite topological entropy is suggested.
Namely, let D be a unitary disc in C and let M := D”" endowed by the Tikhonov’s
topology. A discrete dynamical system 7;, (with multidimensional ’time’ h € Z")
on M can be defined in a natural way:

(0.15) Tho(l) :=v(h +1), h1e€Z" veM
(Recall that as usual M is interpreted as a space of functions v : Z™ — D).
The main result of the paper is the following theorem.

Theorem 5. Let the assumptions of Theorem 8 hold. Then there is a positive
number o > 0, the closed subset K C A and a homeomorphism 7 : M — K such
that

(0.16) Ton K =K and Typr(v) = 7(Thv), YhEZ", veE M
5



Moreover, this homeomorphism is occurred to be Lipschitz continuous under the
appropriate choice of metrics on A and M and preserves the modified topological
entropy: ~ R ~

0 < hsp(M) = hgp(K) < hgp(A) < 00

As the first elementary corollary of this construction we obtain the fact that
every finite dimensional dynamics can be realized (up to a homeomorphism) by
restricting the spatial dynamical system (0.14) to the appropriate closed subsets
of A.

Corollary. Let n = 1 and the assumptions of Theorem 3 hold. Assume that
M C RN s an arbitrary compact set and v : M — M is an arbitrary homeo-
morphism of it. Then there is a number o' >0, a set Ky = Ky (M,v¢) C A and a
homeomorphism 1’ : M — K, such that

(017) Ta”hK't/) = sz, Vh € Z and Ta” o TI = TI o ’('b

The result of this Corollary confirms from the other point of view that the spatial
dynamics (0.14) is an extremely chaotic.

Recall now that we have also the temporal evolution operator Sy : A — A, t >0
generated by the equation (0.1), therefore it seems reasonable to study the temporal
evolution of spatially chaotic structures in A (see also [11], [13]). To this end we
introduce a notion of the spatial complexity for the individual point ug € A in the
following natural way:

(0.18) /}\Lsp(uO) = Esp(/Hsp(UO))

where Hgp(uo) := [Thuo, h € R™] 4 is the closure in A of complete orbit for ug with
respect to the spatial shifts. Under some additional assumptions which look not
very restrictive we prove that this value preserves under the temporal evolution.

Theorem 6. Let the assumptions of Theorem 8 hold and let in addition the diffu-
sion matriz a is normal (aa* = a*a). Then

~ ~

(0.19) hsp(Siuo) = hgp(ug), Yup € A
Moreover, there are points ug € A such that
0< ?Lsp(uo) < 00

Thus, Theorem 6 shows that the spatial chaos preserves under the temporal
evolution.

We illustrate the obtained results on the example of complex Ginzburg-Landau
equation (see Example 8.1).

The paper is organized as follows.

The definitions of functional spaces which are of fundamental significance for our
study the equation (0.1) and their simple properties are given in Section 1.

The various a priori estimates for the solutions of (0.1) are obtained in Section 2.
Moreover, basing on these estimate we verify the existence of a solution, it’s unique-
ness and derive some estimates for differences of solutions which will be essentially
used later.



The existence of a global attractor A for the system (0.1) is verified in Section 3.

The definition of Kolmogorov’s e-entropy and the standard of examples which
illustrate the typical behavior of the this quantity as ¢ — 0 for various sets in
functional spaces are recalled in Section 4.

The upper bounds of the e-entropy for the attractor A of the equation (0.1) are
obtained in Section 5.

The further development of the method of infinite dimensional unstable mani-
folds for the equation (0.9) are given in Section 6. Moreover, using this method we
derive the lower bounds of the Kolmogorov’s entropy of the attractor and prepare
a number of technical tools for studying the spatial complexity of the attractor.

This spatial complexity is investigated in Section 7 (particularly Theorems 4 and
5 are proved here). Note, that the results of this Section are essentially based on
the results of Sections 5 and 6.

The temporal evolution of the spatially chaotic structures are studied in Sec-
tion 8. In particular the Holder continuity of the inverse operator for S; restricted
to the attractor which is of independent interest is proved here.

Acknowledgements. The author has greatly benefited from helpful comments of
M.Efendiev, H.Gaevski, A.Mielke, and M.Vishik.
§1 FUNCTIONAL SPACES

In this Section we introduce several classes of Sobolev spaces in unbounded
domains and recall shortly some of their properties which will be essentially used
below. For a detailed study of these spaces see [14], [33].

Definition 1.1. A function ¢ € Cioe(R"™) is called a weight function with the rate
of growth p > 0 if the condition

(L.1) oz +y) < Cye"*o(y), d(z) >0

is satisfied for every x,y € R™.
Remark 1.1. Ii is not difficult to deduce from (1.1) that

(1.2) bz +y) > CFe el g(y)

is also satisfied for every xz,y € R™.

The following example of weight functions are of fundamental significance for
our purposes:
beao(x) = e 1770 c e Rz € R

(Evidently this weight has the rate of growth |e|.)

Definition 1.2. Let Q C R"® be some (unbounded) domain in R and let ¢ be a
weight function with the rate of growth pu. Define the space

2@ = {u e @)+ ooy = [ sl do < oo}

Analogously the weighted Sobolev space qu;p(ﬂ), I € N is defined as the space of
distributions whose derivatives up to the order | inclusively belong to LZ(Q).
7



e—clzl "

For the simplicity of notations we will write below WSE”; instead of WP
We define also another class of weighted Sobolev spaces

W,fg(ﬂ) = {u € D'(Q) : 1w, QY 41, = sue% &(zo)||lu, Q ﬁBiOHf’,p < oo}
o

Here and below we denote by Bfo the ball in R™ of radius R, centered in xo, and
[, Vlep means [Jullwis vy

We will write Wbl’p instead of Wblf

Proposition 1.1.
1. Let u € Lg(ﬂ), where ¢ is a weight function with the rate of growth . Then
for any 1 < g < oo the following estimate is valid:

(13) (L¢mm(4efz“mwwwfdmfmscé¢wwwvw

for every e > p, where the constant C' depends only on e, u and Cy from (1.1) (and
independent of ).
2. Let u € L (2). Then the following analogue of the estimate (1.3) is valid:

(1.4) sw{wmggwf”“mwm}scﬁgwmwmn

zoEQ

The proof of this Proposition can be found in [14] or [33].

For the more detailed study of functional spaces defined above we need some
regularity assumptions on the domain 2 C R™ which are assumed to be valid
throughout of the paper.

We suppose that there exists a positive number Ry > 0 such that for every point
xo € Q) there exists a smooth domain V., C  such that

(1.5) Bl*nQCV,, CBft' nQ

Moreover it is assumed also that there exists a diffeomorphism 6, : Bg — Bf{f”
such that 0,,(z) = 2o + pa, (), Oy (B§) = Vi, and

(1.6) Izollen + Ilp7,) llew < K

where the constant K is assumed to be independent of zg € Q and N is large
enough. For simplicity we suppose below that (1.5) and (1.6) hold for Ry = 2.

Note that in the case when €2 is bounded the conditions (1.5) and (1.6) are equiv-
alent to the condition: the boundary 92 is a smooth manifold, but for unbounded
domains the only smoothness of the boundary is not sufficient to obtain the regular
structure of @ when || — oo since some uniform with respect to zo € 2 smooth-
ness conditions are required. It is the most convenient for us to formulate these
conditions in the form (1.5) and (1.6).

8



Proposition 1.2. Let the domain Q satisfy the conditions (1.5) and (1.6), the
weight function — the condition (1.1) and let R be a positive number. Then the

following estimates are valid:
(1.7)

o /Q b(@)u(@)P dz < /Q 6(x0) /Q - ()P dz dzo < Cy /Q (@) |u() [P dz

Proof. The proof of this Proposition is given in [14] or [33]. For the reader’s con-
venience we recall shortly this proof.
Let us change the order of integration in the middle part of (1.7)

1) [ o) [ L 1Mz = [ @ ( / meBﬂxow(wo)dm) dz

Here xonpr is the characteristic function of the set 1N BE.
It follows from the inequalities (1.1) and (1.2) that

(1.9) Ci¢(z) < inf, cpr (7o) < sup, cpr #(z0) < C2op(2)

and the assumptions (1.5) and (1.6) imply that
(1.10) 0<C <vol(2nBH) <y

uniformly with respect to z € Q.
The estimate (1.7) is an immediate corollary of the estimates (1.8)—(1.10). Pro-
position 1.2 is proved. O

Corollary 1.1. Let (1.5) and (1.6) be valid. Then the equivalent norm in weighted
Sobolev space Wdl)’p(ﬂ) is given by the following expression:

1/p
(111) JuOloay = ([ om0 BE I, dio

Particularly, the norms (1.11) are equivalent for different R € Ry .

To study the equation (0.1) we need also weighted Sobolev spaces with fractional
derivatives s € Ry (not only s € Z). For the first we recall (see [30] for details) that
if V is a bounded domain the norm in the space W?(V), s = [s] + [, 0 < < 1,
[s] € Z4 can be given by the following expression

D® — D~ P
) i, = vig, s S [ [ PO Dl
’ ’ zeV JyeVv |x_y| P

lo|=Ts]

It is not difficult to prove arguing as in Proposition 1.2 and using this representation
that for any bounded domain V' with a sufficiently smooth boundary

(1.13) llu, VIS

P —

<0 / lu, VABE |2, dzg < Collu, V2,
zo€V

This justifies the following definition.



Definition 1.3. Define the space W;*(Q) for any s € Ry by the norm (1.11).

It is not difficult to check that these norms are also equivalent for different R > 0.
Note now that the weight functions

(1.14) e ap () = e~ Fl70]

satisfy the conditions (1.1) uniformly with respect to o € R™, consequently all
estimates obtained above for the arbitrary weights will be valid for the family (1.14)
with constants, independent of g € R™. Since these estimates are of fundamental
significance for us we write it explicitly in a number of corollaries formulated below.

Corollary 1.2. Let u € L?a}(ﬂ) for 0 < & < e. Then the following estimate holds
uniformly with respect toy € R

a 1/q
(1.15) (/ e~ 1lzo=y] </ e~slz=ol)y (z) P da:) da:0> <
Q Q
< C’E,q/ e 0lz=vly(z) P da
Q

Moreover if u € Lf{’g}(ﬂ), 0 < € then

(1.16) sup {e“”“‘y' sup{e‘”‘””"lu(w)l}} < C. g sup{e™? " |u(z)[}
2o EQ zEQ z€EQ

Corollary 1.3. Letu € W,fg(ﬂ) and ¢ be a weight function with the rate of growth
u < e. Then

(1.17) Cl||u,Q||§7¢7l7p§
S sup {¢(x0)/ EEEEOHU,QPIB;“?I)CZQT} S C2||U’Q||§¢lp
r0EQ 2eQ D ; Pt

For the proof of this corollary see [33].
We will need also the following subclass of weight functions with the exponential
rate of growth.

Definition 1.4. A function ¢ € Cj,.(R™) is defined to be a weight function with
the polynomial rate of growth p if the following inequality is valid for every z,y € R”

2
(118) oz +1) < Cp (L + (X +Jg2) -, (L +1yal?) " 6(2), é(x) >0
The following analogue of Corollary 1.3 is valid for such weights.
Corollary 1.4. Let ¢ be a weight function with a polynomial rate of growth u < N.

Then the following estimate is valid:

(1.19) C; sup ¢(zo)u(zg) <
o EQ

< Sup{(ﬁ(ﬂ?) sup (L4 |21 —y1]?) -+ (1 + |zn — yn|2))7N/2 U(y)} <
zEQ YyER

< Oy sup @(zo)u(xo)
ToEQN

The proof of this Proposition is completely analogous to the proof of Corollary 1.3
(see e.g. [33]).
10



§2 THE A PRIORI ESTIMATES, EXISTENCE OF SOLUTIONS, UNIQUENESS.

In this Section we derive a number of a priori estimates for the solutions of the
reaction-diffusion system

(2.1) Ou = alu— Nu— f(u)+g, z€Q, u|8Q =0, u|t:0 = ug

in the unbounded domain Q C R™ satisfying the assumptions of the previous Sec-
tion. Moreover, basing on these estimates we derive the existence of a solution u(t)
for (2.1) it’s uniqueness and obtain some estimates for differences of solutions of
(2.1) which will be used below for studying the attractor of this system.

Recall, that u(t) = (u'(t,z),- - ,u*(t,z)) is assumed to be a vector-valued func-
tion, a is a constant k& X k matrix satisfying the condition a + a* > 0, Ag > 0, the
nonlinear term f(u) satisfies the assumptions

1. feC*Rr RF)
(2.2) 2. flu)u>-C
3. f'(u) 2 K

Moreover, we impose the additional growth restriction for the nonlinearity f(u):
(2.3) [F)] < CQA + [ul?),

Where the exponent p is arbitrary for n <4 and ¢ < 1+ ﬁ for n > 5.

The external force g is assumed to belong to the space L] (Q2) for a certain ¢ > 2
and ¢ > & (note, that if n < 3 then the exponent ¢ = 2 is admitted) and the initial
data ug is supposed to be from the phase space ®,(2) := Wf’q(ﬂ) N {u0|8Q = 0}.

The solution of (2.1) is defined to be a function

(2.4) u € LRy, W(92)) N O([0, 00), L ()

which satisfies the equation (2.1) in the sense of distributions.

Remark 2.1. It follows from the Sobolev’s embedding theorem and from our
choice of the exponent ¢ (¢ > n/2) that the solution v € L®(R; x ), conse-
quently, the nonlinear term in (2.1) is well-defined and belongs to L*°. Therefore
it follows from (2.4) and from the equation (2.1) that

(2.5) Owu € L¥(Ry, LY ()
Moreover, it can be shown using the standard arguments (see e.g. [33]) that

(2.6) we C([0,T], W2, () nC'([0,T],L_.,., ()
for every T > 0 and every € > 0. Note however, that in contrast to the case
of bounded domains for generic ug € ® the corresponding solution w(t) is not
continuous at t = 0 as a function with values in ®;(Q2) (see e.g. [28] for the
conditions on ug which guarantee this continuity).
The main result of this Section is the following theorem.
11



Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).
Then the following estimate is valid

(2.7) lu(®llay o) < Q (Iu(O)llay(@)) e + @ (llglzze))

where a > 0 is a certain positive constant depending only on the equation and Q) is
an appropriate monotonic function which also depends only on the equation (and
independent of u and uy ).

Proof. We divide the proof of this theorem in a number of lemmata.

Lemma 2.1. Let the above assumptions hold. Then the following estimate holds
for every xy € Q:

T+1
(2.8) Nu(T), 2N B, i3> + /T lu(t), 2N By, 17 dt <

< Cemo (el Ju(0)) + C (|gf, 1)
where the positive constants C, a, e are independent of xo and (u,v) means the inner
product in L*(Q).

The proof of this estimate is standard and is based on multiplying the equation
(2.1) by u(t)e~¢l#=ol (with ¢ > 0 small enough) integrating by parts and using the
dissipativity assumption f(u).u > —C| the positiveness of a and the evident fact
that

(2.9) IV (e*EII*Io\) | < ce—clz—zo

(see e.g. [14] or [33] for details).

Lemma 2.2. Let the above assumptions hold. Then the following estimate is valid:

T+1
(210) [lu(T),Q0 BL[E, + / lu(t), 2N BL |12, dt <
T
< e (el u(O) + [V,u(0)?) + C (|gf?,e=17721)

where the positive constants C,a, e are independent of xg.
Proof. Let us multiply the equation (2.1) by the expression

n

(2.11) > 0, (hermo (2)0,u(t)) 1= G2 mo Agti(t) + Ve ay-Vault)

i=1

where ¢. ,,(z) := e=*/*=%| and & > 0 is small enough. Then we obtain after the
standard integration by parts and using the monotonicity assumption f'(u) > —K
and the inequality (2.9) that

(2.12)  1/28; (92,20, [V2u(t)]?) + Ao (G200, [Var(®)*) + i (e 00, [Asu(t)?) <
<K (‘bs,woa |Vzu(t)|2) + Clale (e zo |Azu(t)], Vau(t)]) +

+ (=20, 91| Acu()] + elg||Vru(?)])
12



Estimating the last two terms in the right-hand side of (2.12) by Holder inequality
we derive that

(2.13) B4 (Beo, [Vatt(B)]?) + Ao (Be,0, | Vare()]?) + 1t (Do mo, | Asu(t)]?) <
< 2K (¢e,z0, [Vau(t)?) + C (2,20, l9I°)

Applying now the Gronwall inequality to (2.13) and using the inequality (2.8) in
order to estimate the t-integral over the right-hand side of (2.13) we derive that

(2.14) (¢6,mo: |ku(T)|2) < Ce T (¢6,wo: |un(0)|2 + |U(0)|2) +C (¢E7xov |g|2)

The estimates (2.13) and (2.14) imply that

T+1
2.15) /T (6ermms | Asu(t)2) dt <
S Cle_aT (¢E7x07 |VCK’U’(O)|2 + |U(0)|2) + Cl (¢E7it0? |g|2)

Note also, that according to our regularity assumptions on the boundary 9Q we
have elliptic regularity for the Laplacian in  (see e.g. [14]):

(2.16) lwze o) <O (18m0liz, @ +lollez, @)

The estimates (2.14)—(2.16) imply the assertion of the lemma. Lemma 2.1 is proved.

Our next task is to obtain the estimate for the W,.»>-norm, analogous to (2.7).
To this end we introduce the following norm, depending on € > 0 and xg € Q:

(2.17) ol . = 0llyze g+ 1F @I (o)

Lemma 2.3. Let the above assumptions hold and let € > 0 be small enough. Then
the following estimate is valid for the solutions of the equation (2.1):

(2.18) lu(®)l3, . < CeXt (||u<o>||%)z_mo + 1+ gl 20@)

where the constant K is the same as in (2.2) and the constant C' is independent of
xo and €.

Proof. We give below only the formal deducing of the estimate (2.18) which can be
easily justified using e.g. the standard difference approximations for the derivative
O:u and the regularity (2.6).

Let us differentiate the equation (2.1) with respect to t and denote 6(t) := Opu(t).
Then this function satisfies the equation

(219) 00 = a0 — Xob — f'(w)f, 0(0) = ad,uo — f(uo) +9g, 0yy=0

Let us multiply this equation by 8(t)¢. », and integrate over z € Q. Then integrat-
ing by parts and using the monotonicity assumption f'(u) > —K and the inequality
(2.9) (where ¢ is small enough) we derive the following estimate:

(220) at (‘bs,moa |9(t)|2) S 2K (¢E,ZO7 |0(t)|2)
13



Applying the Gronwall inequality to this relation we obtain that

@20 10w, ) <O (ol ., + 1+ 91z @)
E,®( E,®(

Having the estimate (2.21) for the L?-norm of the t¢-derivative one can consider the
parabolic equation (2.1) as an elliptic boundary value problem at a fixed point T':

(2.22) alzu(T) = f(u(T)) = hy = 0u(T) = g, u(T)|, =0

with the right-hand side h, belonging to the space Léi v (). Arguing as in the

proof of Lemmata 2.1 and 2.2 (multiplying the equation by u¢. ,, and by the
expression (2.11) and so on) one can easily derive the estimate

2 2
229 Dz <€ (141l o))
The estimates (2.21) and (2.23) immediately imply that

(2.24) Mﬂmwz@SCM“Om%w+lﬂwé @)
be,aq be,z0

Thus, the W22-part of the estimated (2.18) is proved. The rest part of it (the
estimate of L7 ,,-horm of f(u)) is an immediate corollary of the inequalities (2.21),

(2.24) and of the equation (2.1). Lemma 2.3 is proved

Applying the sup, .o to the both sides of the inequality (2.18) and using the
result of Corollary 1.3 we derive that

(225) (Ol g < Ce (uollyas gy + 1 @)l +1+ lalize)

Note, that according to our growth restrictions to f and to the Sobolev embedding
theorem

(2.26) 17 (uo)ll 12y < Qllunllyyz )

for the appropriate monotonic function @ (Q(z) := C(1 + |z|?)).
The inequalities (2.25) and (2.26) imply the following estimate:

(2.27) la(@®)lly22() < C* (Qluollyz2(q)) + lgllzzo))

Note however that the obtained estimate of the Wb2 2_norm diverges exponentially
with respect to ¢ — oo which is not good from the attractor’s point of view. In
order to remove this divergence we need the following smoothing property.

Lemma 2.4. Let the above assumptions hold. Then the following estimate is valid

for any solution of the problem (2.1):

(2.28) lu(D) Iy < QUI(O)ly12(g)) + Cllgllzze
14



for a certain monotonic function Q.

Proof. Let us fix an arbitrary zo € Q and a sufficiently small ¢ > 0. It follows from
the estimate (2.10) and the result of Theorem 1.1 that

(2.29) / lu(t ||W2 2 (g dt<C <1 + IIu(O)II?y; >

e,2Q

o+l o)

It follows from (2.29) that there exists a point T'= T'(zo) € [0, 1] such that

2 2
230 e o <0 (14 O,

e,2Q

2
o+l )

According to our growth restrictions to the nonlinearity f(u), Sobolev embedding
theorem and the result of Propositions 1.1 and 1.2 we derive that

(2.31) ||f(“(T))||2L%¢ @ <C <1 —l—/ e Pl w0l |y (T )% da?) <
pe,zQ zEQ
<o (te [ el v, dr) <
zEQ

<6 (1 t [ e, v, dw)
zeQ
p
§03<1+ / ] (/ e-”-w||u<T>,vy||%2dy) dz)s
2€Q yeQ ’

p p
<0y (1 +/ 675\1710|||u(T),VE||§72 da:) <05 <]. + ||’LL(T)||%/I/2,2 (Q)>
z€Q e,z

where § > ¢ and V,, is the same as in the conditions (1.5) and (1.6). Here we have
used also the evident formula (see e.g. [14])

IN

(2.32) 1o, Vallip < Cs / 1=l jo, Vi 1 dy
yEQ

which holds for every § > 0.
The estimates (2.30) and (2.31) imply that

p
233) (DI, <C (1 Oz o)+ oz, 20<9>)

Applying now the estimate (2.18) with ¢ replaced by pe at the initial time moment
t = T instead of t = 0 we derive from (2.33) that

p
2 2 2
(2.34) ||u(1)||W§i‘m0(Q) <O (1 + IIQIIL;E‘ZO(Q) + IIu(O)IIW;;mO(m)

Note that all constants C; in the previous estimates were in a fact independent of
the choice of zg € (2, consequently applying the sup, .q to the both sides of (2.34)
and using the result of Corollary 1.3 we derive the estimate (2.28). Lemma 2.4 is
proved.

Thus, we have proved the analogue of the estimate (2.7) for ¢ = 2.
15



Lemma 2.5. Let the above assumptions hold. Then

(2.35) l(®) [y 22y < @Clluollyz2(y)e ™ + Qg2 (@)

for a some positive a > 0 and a certain monotonic function Q.

Indeed, the assertion of the lemma is a simple corollary of estimates (2.10), (2.27)
and (2.28)

Our task now is starting from the Wb2’2—estimate (2.35) and using the para-
bolic regularity theorems to improve steps by steps this estimate to the Wb2 _eg-
timate (2.7). For the first we derive the W, *“-estimate for a sufficiently small
positive p.

Lemma 2.6. Let the above assumptions hold. Then for every pu > 0 the following
estimate is valid:

(2.36) lu@®)llpz-ra0y < Qulllu(0)lle,@)e " + QulllgllLzo)

where a > 0 is a certain positive constant and Q, is a monotonic function (de-
pending on ).

Proof. Recall that we assume that the domain Q satisfies the conditions (1.5) and
(1.6) with Ry = 2. Let us consider the cut-off function ¢ (z) € C§°(R™) such that
Y(z) = 1if 2 € B} and ¢(z) = 0 if = ¢ BZ. Denote 9,,(z) := ¥(z — x0) and
Vgo (t) := Yy u(t). Tt follows from the equation (2.1) and from the condition (1.5)
that v,,(t) is a solution of the following problem:

(2.37) Oy — AALVzy + AoVsy = hao () := Vuyg — 2V 2y, .aV u—
= Ayag-avzy — Yoo f(U), Uz, |V20 =0; va, |t 0o~ Ya,u(0)

The following standard regularity result is of fundamental significance for our proof
of the lemma.

Proposition 2.1. Let the domains V,, satisfies the assumptions (1.5) and (1.6).
Then for every 1 > p > 0,1 < r < oo, and t € [0,1] the following estimate is valid
for the solution vy, of the problem (2.37):

(238) ||v900 (t)7 Vwo ||2—Itﬂ" <C (“vwo (0)7 on ||2—,U«77" + Sl[lp] ||h$07 Vwo ||077">
s€(0,t
where the constant C = C(r, p) is independent of xg.
Moreover the following version of smoothing property is valid for every t € Ry :

(239) ||’Uw0(t+ 1)7V$0||2—lt,7" < Gy (H’Uzo(t)avﬂtonl,? + sup ||h9607V$0||077">
s€[t,t+1]

where the constant Cy is also independent of xg.

Indeed, the estimates (2.38) and (2.39) can be easily proved using the analytic
semigroups theory (see e.g. [9], [30]). Moreover the assumptions (1.5) and (1.6)
imply that the constants C' and C are independent of zg.

16



Assume now that we have already proved the estimate (2.36) with ¢ replaced by
[, 2 <1 < r and obtain this estimate for a larger exponent r: ¢ > r = r(l) > L.
Indeed, let ¢ < 1, then applying the sup, cq to the both sides of (2.38) we derive
that

(240) [[u(®)lly2-rr @y < C (Iluollay ey + lllzgie ) +

+€ sup (Ju(s) @ + I @D o)

Let us estimate the right-hand side of (2.40) using the Wb%“’l—norms of u(s) which
are assumed to be known.

Indeed, the third term into the right-hand side of (2.40) can be estimated in
a such way if r < r(l) := #Lu)’ where r; = r1(l) is the Sobolev’s maximal
exponent of the embedding W2~#! ¢ Wb (as usual ry = oo if n < I(1 — ). Note
that Tl(l)/l > 7"1(2)/2 = TL/(TL — 2(1 — ,u)) > 6 > 1.

Analogously, using the growth restriction (2.3) and Sobolev’s embedding theorem

W2l c P with p,(1) := #2!—11) we deduce the estimate
(2.41) 1f (w()lLy) < C (14 [luls)lwe-mi(e)”
ifr <ro(l) := p“p(l). Note that according to our growth restrictions p < -2 (in

the case n < 4 we have the embedding W22 C L" for every » and consequently
Lemma 2.5 implies the estimate of L"-norm of f(u) for every r < 00), consequently

() _r22)  n n—4
(2.42) Ty = o =D n_4+2u>62>1

if 4 > 0 is small enough. Let r(l) := min{q,r(l),72(l)}. Then
(2.43) r(l) > min{q,dl}, §:=min{d;,d} >1

if p is small enough, and (2.40) and (2.41) imply that

(2.44) a2 gy < CA+gllng) +C sup (fu()IT 2 g,
s€[0,1] b
fort <1.
Let now ¢ > 1. Then using the estimate (2.39) instead of (2.38) and arguing as
in the proof of (2.44) we derive the estimate

@45) Ol nnig) <O (Lt lollge) + s Iy

Thus, if the analogue estimate (2.36) would be proved for some ¢ = [, then the

estimates (2.44) and (2.45) would imply this estimate for ¢ = (1) > 1 (if p > 0 is

small enough). Recall also that the estimate (2.36) for ¢ = 2 is proved in Lemma

2.5. Therefore, starting with lp = 2 and iterate the estimates (2.44) and (2.45) with

lk+1 := r(lx) we obtain finally the estimate (2.36) with [ = ¢ (the finiteness of the

number of iterations is guaranteed by the estimate (2.43)). Lemma 2.6 is proved.
17



Note that according to our assumptions on the exponent ¢ (¢ > n/2) the em-
bedding WbQ_”’q C Cy holds if g > 0 is small enough. Therefore the estimate (2.36)
implies the following estimate for the C-norm of solutions of (2.1):

(2.46) lu(®lley@) < QUluolle,@))e™" + Qllgllzy ()

with the positive constant a > 0 and a certain monotonic function Q.

Now we are in a position to prove that (2.36) is valid with g = 0 as well and to
complete the proof of the theorem. To this end we introduce a function ¥, = 0, ()
as a solution of the equation

(247) aAI’EIO - /\O'Emo + /‘/}zog =0, ﬁz0| =0

Ve

(where ¢,, and V,, are the same as in the proof of Lemma 2.6). Then, due to the
L-regularity theorem for the Laplacian (see e.g. [30]),

(2.48) 1020, Varoll2,0 < Cllg; Vio llo,g

Moreover, due to the assumptions (1.5) and (1.6) the constant C' is independent of
Ty € Q.

Let wy, (t) := vy, () — U, where v, is the same as in the proof of the previous
lemma. Then this function evidently satisfies the equation:

(2.49) Oiwy, — aApwy, + AWy, = ﬁm (t) := =2V by -.aVu(t)—
= Agag-au(t) — Y, f(ult)), wa, |3Vwo =0, wy, |t o = Vaolo — Uz,

The proof of the estimate (2.7) is based on (2.36) and on the following standard
regularity result for the auxiliary problem (2.49).

Proposition 2.2. Let the above assumptions hold and let 3 > 0 is a positive
number. Then the solutions of the equation (2.49) satisfy the estimate

(2.50) [z (£), Vo ll2,4 < C (IIwzo(O)aVzollzq + sup IIiLzo,Vzollﬂ,q>

s€[0,1]

is valid for t < 1, where the constant C is independent of xg.
Moreover, the following version of the smoothing property is valid for everyt > 0
and p > 0:

(2.51) lwao (t41), Vo ll248 g £ C (Ilwzo(t),Vzolll,z + s IIszo(S),Vzollﬂ,q>
se|t,

where the constant C = C(B, p) is also independent of .

Indeed, the estimates (2.50) and (2.51) can be obtained using e.g. the analytic
semigroups theory (see [9], [30]). The fact that the constant C' is independent of
xo is guaranteed by the regularity assumptions (1.5) and (1.6) on the domains V.

Note that due to the fact that f € C' and due to the embedding W2~#¢ Cc C
for 4 > 0 is small enough we have the estimate

(2.52) 1f )o@y < QUIUS) ly2-ra (o))
18



for a certain monotonic function @) (depending only on f). Consequently, arguing
as in the proof of Lemma 2.6 and using the estimates (2.50)—(2.52) we derive that

253) u@lyze@y < O (Mallosr + lollzgon) + s @I lhw-roa)

is valid for ¢ < 1 and for the appropriate function @; and the following smoothing
property
(2.54) lu( + Dllwzeq) < sup  Qu(lluls)llyy2-wag)) + Cligllrie)

b s€[t,t+1] b
is also valid for every ¢t > 0. Inserting the estimate (2.36) into the right-hand
side of (2.53) and (2.54) we derive after simple transformations (see e.g. [33]) the
inequality (2.7). Theorem 2.1 is proved.

Remark 2.1. Arguing as in the proof of Theorem 2.1 one can deduce the following
smoothing property for the solutions of (2.1)

(2.55) lu(MWla,2) < QUIu(0)L20))

Indeed, the smoothing property from Wb1 2(Q) to Wb2 7(Q) is in a fact proved in
Lemmata 2.3-2.6. The smoothing property from L7 to Wb1 2 can be proved in a
standard way (see the proof of Lemma 2.2, only instead of multiplying the equation
by the expression (2.11) one should multiply it by #(2.11)).

As usual having the a priori estimate (2.7) one can easily verify the existence of
a solution for the problem (2.1).

Theorem 2.2. Let the above assumptions hold. Then for every ug € ®,(Q) the
equation (2.1) possesses a unique solution u(t). Moreover, the following estimate
holds for every two solutions ui(t) and us(t) of the equation (2.1):

(2.56) [Jur (8) = ua (t)]| L2(0) < Ce™|ur(0) — u2(0)l|2(q)

where the constant K is the same as in (2.2) and constant C' depends only on the
equation.

Proof. The existence of a solution of (2.1) for the case where the domain € is
bounded can be deduced from the a priori estimate (2.7) using the Leray-Schauder
fixed point principle (see e.g [23]). The existence of a solution in the unbounded
domain € can be proved after that approximating the unbounded domain €2 by the
bounded ones Qx and passing to the limit N — oo (see e.g. [14] or [33] for details).

Let us prove the estimate (2.56) which immediately implies the uniqueness. Let
u1(t) and u2(t) be two solutions of (2.1) and let v(t) = wq(t) — ua(t). Then this
function satisfies the equation

(2.57) 0w = alAzv — Mov — I(t)v, v|8§2 =0, v|t:0 = u1(0) — u2(0)
where [(t) := fol f'(sur (t)+(1—=s)us(t)) ds, I(t) € L(RF, R*). Note that according to
our assumptions on f, we have [(t) > —K, consequently, multiplying the equation

(2.57) by v(t)dez,, integrating over the z € Q and arguing as in the proof of
Lemmata 2.1 and 2.2 we derive that

t+1
2 2 2Kt 2
@38 WOl e+ [ e o @< CEN O, o

Applying the operator sup, o to the both sides of the obtained inequality and
using the result of Corollary 1.3 we obtain the inequality (2.56). Theorem 2.2 is
proved.
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Corollary 2.1. Let the above assumptions hold. Then the problem (2.1) defines a
semigroup Si in the phase space ®,():

(2.59) St ®p(Q) = D4(Q), wu(t) = Spuo

where u(t) is a solution of (2.1) with u(0) = up.

Remark 2.2. The estimate (2.56) admits to extend by continuity the semigroup
S; from ®,(2) to L7 (). Moreover, due to the smoothing property (2.55) the
semigroup S; thus obtained will act from L2(2) to ®,(Q) if ¢ > 0. Thus, it is
possible to define a solution of the problem (2.1) for every initial data from L7 ().

We conclude this Section by formulating some results on the smoothing property
for difference of solutions of (2.1) which are of fundamental significance for our study

the attractor of (2.59).

Theorem 2.3. Let the above assumptions hold. Then for every two solutions
uy(t),u2(t) € ®, and for every e > 0 the following estimate is valid:

(2.60) 1 (1) = ua (1), 2NV By [[72 < Cllua(0) = ua(0)[[72 (@)
where the constant C = C(||lui||s,, ||uzlls,,€) is independent of o € Q. Analo-
gously,

(2.61) lur (1) = ua(1), 2N By |l , < Cillua (0) — uz()ll72

€20

()

where Cy is also independent of xg € (.

Remark 2.3. Evidently the first estimate is an immediate corollary of the second
one but nevertheless it is more convenient for us to formulate them separately taking
in mind the further applications of them for study the entropy of the attractor.

Proof. The proof of these estimates is based on a standard analysis of the linear
equation (2.57) and can be obtained in the spirit of the proof of Theorem 2.1 but
essentially simpler because the equation (2.57) is linear and the coefficient I(¢) is
smmoth enough:

(2.62) I lwrancy @) < QUlui(0)]le, , [[uz(0)]a,)

(due to (2.7) and due to the facts that f € C? and WY C C (see e.g. [14] or
[33] for details). Indeed, in order to prove the first estimate of the theorem it is
sufficient to multiply the equation (2.57) by ¢ Y7 Oy, (¢e,z00r,v(t)), integrate over
z € Q and apply the Gronwall inequality using the estimates (2.61) and (2.58) (see
the proof of Lemma 2.2). The second one can be deduced from the first one using
e.g. the iteration method of improving the smoothness introduced in the proof of
Lemma 2.6. Theorem 2.3 is proved.

§3 THE ATTRACTOR.

In this Section we prove the existence of the locally compact attractor A for the
semigroup S, generated by the equation (2.1).
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Note that although according to Theorem 2.1 the semigroup S; : ®,(Q) — &,(€),
generated by the equation (2.1) possesses a bounded absorbing set B in the phase
space ®(12), i.e. for any other bounded subset of B C ®,() there exists T = T'(B)
such that

SsBCBift>T

(the existence of B is an immediate corollary of the estimate (2.7)) but nevertheless
in contrast of the case of bounded domains in unbounded domains the compact
attractor in ®,(2) may not exist, e.g. the Chafee-Infante equation in R (k = 1,
f(u) = u® — du, X > o) does not possess a compact attractor in the topology of
Dy (2) (see e.g. [33])

That is why (following to [17], [18], [26], [27]) we will construct below the at-
tractor A of the semigroup (2.59) which attracts bounded subsets of ®,(Q2) only in
a local topology of the space ®;,. = Wfof(ﬂ) (i.e., A is the (®y, P )-attractor of
(2.59) in notations of [4]).

Recall that the space ®;,.(Q) is reflexive metrizable F-space which is generated
by seminorms ||-, QN BL ||2,4, 2o € Q.

Definition 3.1. A set A C ®,(Q) is defined to be the attractor of the semigroup
S if the following assumptions hold:

1. The set A is compact in ®;,.(Q).

2. The set A is strictly invariant with respect to Sy, i.e.

StA=A fort>0

3. The set A is an attracting set for Sy in local topology, i.e. for every neigh-
borhood O(A) of A in the topology of the space ®;,.() and for every bounded in
uniform topology subset B C ®,(Q) there exists T = T(O, B) such that

SiBC O(A) ift>T

Recall that the first condition means that the restriction A|Ql is compact in the

space W21(Q) for every bounded Q; C Q.
Analogously, the third condition means that for every bounded Q1 C Q, every
bounded B in ®,(2) and every W?2(Q;)-neighborhood O(A|Ql) of the restriction

.A|Ql there exists T'= T'(Q21, O, B) such that

(S¢B)|g, CO(Al, ) ift>T

Q

Theorem 3.1. Let the above assumptions be valid. Then the semigroup S¢, defined
by (2.59), possesses an attractor A in the sense of Definition 8.1 which has the
following structure:

(3.2) A=K,

where we denote by K the set of all solutions u of (2.1), defined and bounded for all
t€R (supiep [[u(t)la,(@) < o0).

Proof. According to the attractor’s existence theorem for abstract semigroups (see
[4]), it is sufficient to verify the following conditions:
1. The semigroup S; possesses a compact absorbing set K in ®;,.-topology.
2. The operators S; have closed graphs on K in the ®;,.-topology for every fixed
t>0.
Let us verify the first condition. To this end we need the following Lemmata
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Lemma 3.1. Let the domain Q satisfy the assumptions (1.5) and (1.6). Then for
every g € L] (Q) the problem

(3.3) alAgv — v+ 9 =0, 0

”|39 =
possesses a unique solution v = v(g) € Wf’q(ﬂ) and the corresponding estimate
(3.4 ol < Cllgllzcay

is valid

Indeed, the maximal regularity (3.4) follows e.g. from the estimate (2.7). The
existence of a solution and it’s uniqueness can be verified as in Theorem 2.2.

Lemma 3.2. Let u(t) be a solution of the equation (2.1), v = v(g) be the solution
of (3.4) constructed in Lemma 3.1, and w(t) = u(t) —v. Then there is a positive
> 0 depending only on the equation such that

(3.5) w2+ gy < QU)o @) + QUlglLy (@)

for a certain monotonic function Q.

Indeed, basing on the smoothing property (2.51) and arguing as in the end of
the proof of Theorem 2.1 one can derive the estimate

(3.6) lw(W)lly2+s.0q) < sup Qu(|luls)]le,(2)

s€[0,1]

for a certain monotonic function (); and positive 5. Inserting now the estimate
(2.7) into the right-hand side of (3.6) we obtain (3.5).
The estimates (2.7) and (3.5) imply that the set

(3.7) K :=u(g)+ Br(W; %), Br(W, 1) =
= {w e W2TP9(Q) [w]lyz+s.a < R}

will be an absorbing set for the semigroup (2.59), generated by the equation (2.1)
if R is large enough. It remains to note that the absorbing set K thus obtained is
evidently compact in ®;,.(€2). Thus, the first assumption of the abstract theorem
on the attractor’s existence is verified.

Let us verify the second one. To this end we need one more lemma.

Lemma 3.3. Let B be a bounded set in ®,(Q) and ¢ be a positive weight func-
tion from the class introduced in Section 1 such that [, ¢(x)dx < co. Then the
topologies induced on B by the embeddings B C ®10.(Q2) and B C $4(Q) := Wg’q(ﬁ)
coincide.

The assertion of the lemma is more or less evident and we leave the rigorous
proof of it to a pedant reader.

Let us fix ¢(z) = e~*1*! where € > 0 is small enough. Then due to Lemma 3.3
in order to prove that S; has a closed in ®,.-topology graph on K it is sufficient
to prove that the convergences

. . n _ : n
(3.8) up = Pp— lim ug, v= <I>¢—nh_>ngo Srug

n—oo
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with uf,up € K imply that v = Siup. But according to the estimate (2.58) the
semigroup S; is globally Lipschitz continuous in the Li—topology, consequently

(3.9) Siug = Li—nli_{rgo Seult

The convergences (3.8) and (3.9) imply that v = Siug. Thus, all assumptions
of the abstract theorem on the attractor’s existence are verified and consequently
the semigroup S; possesses an (®y, ®;,.)-attractor which has the structure (3.2).
Theorem 3.1 is proved.

Remark 3.1. It is not difficult to prove arguing in the spirit of Section 1 that the
semigroup S; not only has a closed graph in ®;,. but Lipschitz continuous and even
differentiable on every ®,-bounded subset (see also [14]).

§4 KOLMOGOROV’S e-ENTROPY: DEFINITIONS AND TYPICAL EXAMPLES.

In this Section we recall briefly the definition of e-entropy and give the upper
and lower estimates of it when ¢ — 0 for the typical sets in functional spaces. For
the detailed study of this concept see [22], [30].

Definition 4.1. Let M be a metric space and let K be precompact subset of it.
For a given € > 0 let N.(K) = N.(K,M) be the minimal number of e-balls in M
which cover the set K (this number is evidently finite by Hausdorff criteria). By
definition, Kolmogorov’s e-entropy of K in M is the following number:

(4.1) H. (K) = H. (K, M) = In N.(K)

Example 4.1. Let K be compact n-dimensional Lipschitz manifold in M. Then
the evident estimates imply that

n\" n\"
(4.2) Ci (g) <N:(K) <O (g)
and consequently
(4.3) H.(K) = (n+0o(1))Iln %
when € — 0.

This example justifies the following definition.

Definition 4.2. The fractal (box-counting) dimension of the set K CC M is de-
fined to be the following number:

(4.4) dimp(K) = dimp (K, M) = lim sup He (‘i{)

e—0 In z

Note that the fractal dimension dimp(K) € [0, 0c] is defined for any compact set
in M but may be not integer if K is not a manifold.
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Example 4.2. Let M = [0,1] and let K be the ternary Cantor set in M. Then it
is not difficult to obtain that

1\* 1\* In 2
4. ) <Nk <o (t) , a=22
(45) G <5> < No(K) < G (5) In3
and consequently dimp(K) =d = 22

Consider now the examples of infinite dimensional sets (i.e. dimp(K) = 00).
The following two examples give the typical asymptotics for the entropy in the
spaces of analytical functions.

Example 4.3. Let K be the set of all analytic functions f in a ball B(R) of radius
R > 1 in C" such that ||f||r~(p(ry < 1 and let M be the space C(Bf¢), where
Bfe = {2 € C* : Imz = 0,|z] < 1}. Thus, K consists of all functions from
C(Bf¢) which can be extended holomorphically to the ball B(R) C C" and the
C-norm of this extension is not greater then one. Then

g

n+1 n+1

For the proof of this estimate see [22].

Example 4.4. Let M be the same as in previous example and let K be the set of
all functions f in M which can be extended to the entire function f in C"* which
satisfy the estimate

(4.7) 17(2)| < Kie"2l#l 2 e
Then, as proved in [22],

1 1 n+1
1% <H:(K)<C

n+1
(In2)

(48 ()"

The next example gives the typical asymptotics for the entropy in the class of
Sobolev spaces in bounded domains.

Example 4.5. Let 2 be smooth bounded domain in R® and

WP Q) cc W2P2(Q) , 0<1; < 0o, 1 <p; < oo, I} >1s

i.e., according to the embedding theorem % — pl—l > % — pl—Z.
Let now M = W:P2(Q) and K be the unitary ball in W'-P1(Q). Then
1 11212 1 11212
(49) o (1) smm <)

The proof of this estimate can be found in [30].
The following class of functions will be essentially used in the next Section in
order to obtain the lower bounds of e-entropy of attractors.
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Definition 4.3. Let us denote by B, (R") = B, (R",C) the subspace of L>(R",C)
which consists of all functions ¢ with the Fourier transform ¢ satisfying the condi-
tion

(4.10) supp ¢ C [0, 0]"

It is well-known that every function ¢ € B, can be extended to entire function
¢(z) € A(C") which satisfy the estimate

(4.11) sup |p(x + iy)| < C||¢, R”||o,00 - €7 2i=1 1¥il
zER"

Moreover, every function ¢ € L, which possesses the entire extension ¢ satisfying
(4.11) belongs in fact to the space B, .

Example 4.6. Let K = B(0,1,B,), M = C(BEf). Then
1 1
(4.12) H. (B(0,1,B, ), Cy(BL)) < C(R+Klng)"lng, e<e <1

Moreover, C' and K are independent of R.
For the proof of this estimate see for instance [33]. We formulate in conclusion
the lower bounds for the entropy form Example 4.6.

Proposition 4.1. The following estimate is valid for R > Ro and € < g9
1
(4.13) H. (B(0,1,B,),Cy(Bg)) > CR"In -

where the constant C is independent of R and ¢.

For the proof of (4.13) see for instance [22] or [33]. Thus, the estimate (4.12) is
sharp for R ~ ln% and R >> In % For the case R << ln% we formulate only the
following result (see [33]).

Proposition 4.2. For every § > 0 there exists Cs > 0 such that

n+1-4
(4.19) HL (B(0,1,B,),C(BY)) > Cs (lng)

And consequently, the estimate (4.12) is sharp for the case R << ln% also.

Remark 4.1. Instead of the spaces B, one can consider a slightly general class
B,.¢, £ € R¥ which consists of functions ¢ with Fourier transform ¢ satisfying the
assumption

(4.15) supp$ C&+[—o0]”

Note that the space B, ¢ is isomorphic to B, and this homeomorphism is given by
multiplication on the function e*-*. Consequently, the estimates (4.12) and (4.14)
remain valid for the class B, ¢ as well.

We will need also the space of real parts of functions from B, ¢ (R*,C).

Definition 4.4. Define the space IBGRE by the following expression:
(4.16) B (R",R) := {¢ € L(R") : Ju € B,¢(R",C), ¢=Reu}

Remark 4.2. Evidently, ]Bffg C By ¢ +Bs,—¢. Moreover, the analogues of estimates
(4.13) and (4.14) are valid for this space as well. The proof of this fact can be derived
in the same way as for the case £ = 0 (see e.g. [33]).
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§5'THE ENTROPY OF THE ATTRACTOR: THE UPPER BOUNDS

In this Section using the technique developed in [33] we obtain the upper es-
timates of e-entropy for the attractor A of the equation (2.1). Recall that we
constructed the attractor A which was compact only in F-space ®;,. but not in
the uniform topology of ®,(€2). That is why we will estimate the entropy of the
restrictions A|QnBR of the attractor A to an arbitrary ball Bfo in terms of three

z0

parameters €, R and z.

Theorem 5.1. Let the assumptions of Section 2 be valid and let
(5.1) volg, 4 (R) = vol(2N BE )

Then for every R€ Ry, kg € Q, and e <gg < 1
). 1.1
(5.2) H. <A|QOB£0,Wb “an Bﬁ))) < Cvolgz(R+ Kln g)ln R

where the constants C', K and g are independent of R and xg € ().

The proof of this Theorem is based on the estimates (2.60) and (2.61) with a
special choice of the weight function ¢ and completely analogous to the proof of
[33,Th. 8.1]. For the convenience of the reader we give below a sketch of this proof.

Define a family of weight functions with the rate of growth 1 by the following
formula

(53) (o) = {

efimle=wol if |2 — 25| > R
1 if |x — x| <R

It follows from the definition of these functions that
2, R 2,
(5.4) H. <A|mB§0,Wb (0 mBm)> <H. (A, WbJZR‘EO(Q))

Hence, instead of estimating the entropy of the restriction A| onpr 1t 1s sufficient
zq

to estimate the entropy of the attractor in weighted Sobolev spaces Wf;ZR v (Q).

Let now u4(t) and us(t) be two solutions of the equation (2.1) which belong to
the attractor A. Then, according to the estimates (2.61)

(5.5) llua (1) — U2(1)||W:'Zq/2 @ < Cllua(0) — U2(0)||Lg,¢n,m0(9)

Here the constant C is independent of uy,us € A. (Moreover, since

YR 20 (x+y) < e‘m‘@bRwo (y)

then Cy, . =1 and consequently C' is independent of R and z, also.)

Indeed, applying the operator sup,cq ¥R z,(2)%/? to the both sides of (2.61) (in
which zg is replaced by z) we obtain that

q
(D) = ws (D g <

q
bV H o

qa/2
<C (sup ¢R7ZO(Z)/ el |uy (0) — u2(0), 2N B3 dw)
zEQ zEQ
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Applying the estimate (1.17) to the right-hand side of the previous formula we
derive (5.5).

The estimate (5.5) together with the description (3.2) of the attractor .4 implies
immediately that

(56) (AW (@) <oy (4 B, ()

bYR 2
The estimate (5.6) reduces our problem to estimating the entropy of the attractor
in the space Lj . .o ()

The following corollary of the estimate (2.60) (which can be easily derived in the
same way as (5.5)) is of fundamental significance for this estimation: let uy and us
be arbitrary two solutions of the equation (2.1) which belong to the attractor, then
the following estimate is valid:

61 la® =l @ <O - 6Ol o

where the constant C' depends only on the equation.
It has been proved in [33] that (5.7) implies the following recurrent estimate

Lemma 5.1[33]. Let (5.7) be valid. Then

(5.8) o (A Ly, ) SE (A LR, ) +Fin M)
where

ok
(5.9) In My (e) < Cvolg z,(R+ Lin ?)

Moreover, the constants C and L is independent of k, R, ¢ < ey and xg.

The estimate (5.2) is an immediate corollary of (5.8). Indeed, since A is bounded
in @, then there exists Ry > 0, such that Hg, (A, Lj ,, 10) =0 for every R and zo.
The estimate (5.8) implies now that

2k
(5.10) Hp, /ot (A, L§7¢R‘EO) < Chvolo, (R + Lin )

Fixing now k ~ In % and using (5.4) and (5.6) we obtain (5.2). Theorem 5.1 is
proved.

Recall now a number of standard corollaries of the estimate (5.1) (see [15], [33],
and [36]).

Corollary 5.1. Since Cy(Q) C W;?(Q) then
1 1
(5.11) H. (4,C(QNnBL)) < CVOIQJO(R-l-Klng)lng

Corollary 5.2. Let Q = R". Then volg 4, (r) = cr™ and consequently

(5.12) B (A Wp(BE)) < € <R+Kln %) 1n§
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Taking R = In % we obtain that

Inl 1 et
(5.13) HL. (A, W7 (Bgy© )) < Cy <ln g)
Note that the estimate (5.12) gives the same type of upper bounds for R = 1 and
R=Inl.
€

Corollary 5.3. Let Q be a bounded domain. Then Theorem 5.1 implies the esti-
mate

(5.14) He (A, W29(9)) < Cvol(@)In %

which reflects the well-known fact that in this case the attractor A has the finite
fractal dimension.

Corollary 5.4. Let Q = R¥ x w"* be a cylindrical domain where w is bounded.
Then the estimate (5.1) gives the following bound of the e-entropy of the attrac-
tor A:

k
(5.15) H (A4W2@nBE)) <0 <R+ Kln é) lné

Definition 5.1 [22]. Let A C ®,(Q2) be a compact set in the space ®;,0(Q). Then
the e-entropy per unit volume is defined to be the following number:

_ _ E(Aw@nBp)
(5.16) H.(A) = h;%n—fol:)p voloo(B)

Corollary 5.5. The following estimate is valid:

— 1
(5.17) H.(A) <Cln -
Indeed, the estimate (5.17) is an immediate corollary of the estimate (5.2) and
trivial assertion

VOlQ7m0 (R + Cl)

=1
VOIQ7xO (R)

(5.18) M R o0

Definition 5.2. Let ESP(A) be the following number

(5.19) ESP(A) = lim sup %

e—=0 n :

Corollary 5.6. Let the assumptions of Theorem 6.1 hold. Then
(5.20) Tgp(A) < 00

Remark 5.1. The relations between the quantity ESP(A) (which is called below
the modified (spatial) topological entropy) and the phenomena of spatial chaotisity
in the RDE in unbounded domains will be clarified in Sections 7 and 8.

28



§6 INFINITE DIMENSIONAL UNSTABLE
MANIFOLDS AND LOWER BOUNDS OF e-ENTROPY

In this Section we derive using the technique of infinite dimensional manifolds
developed in [14], [33] the lower bounds for the entropy of the attractor A. We
restrict ourselves to consider the spatially homogeneous case 2 = R™, g = 0. Note
that in this case the equation f(z) + Aoz = 0 always has at least one solution
20 = (28, ,28) € R* (due to the assumptions (2.2)) and consequently the equa-
tion (2.1) has at least one spatially homogeneous equilibria point u(t) = z9. We will
obtain the lower bounds for the attractor’s entropy under the additional assump-
tion that the equation (2.1) possesses at least one exponentially unstable spatial
homogeneous equilibria point zy € RF (without loss of generality we will assume
below that zp = 0). To be more precise it is assumed that the equation (2.1) has
the view

(6.1) Oy = alyu + Bu — f(u)

where f € C?(R*,R*) such that f(0) = f'(0) = 0, the matrix B € L(RF RF)
(B = —f'(20) — o) and the spectrum (L) of the linearization £ := A, + B
satisfies the assumption

(6.2) o(L)N{Rez >0} # @

The main aim of this Section is to show that the assumptions (6.1) and (6.2) are
sufficient for obtaining the lower bounds of the entropy of the attractor of the same
type as the upper ones obtained in previous Section.

As usual we start with studying the linear nonhomogeneous problem

(6.3) 0w — Lv = h(t)

which corresponds to the linearization of (6.1) at « = 0. To this end we need the
following functional spaces.

Definition 6.1. Let v € R. Then the space L, (E), where E is a certain Banach
subspace of distributions D'(R™), is defined by the following expression:

(6.4) Ly (E) = {u€ Lig. (R, B) : [jullL,(m) = sup e lu(®)lle < oo}

Lemma 6.1. Let the exponent v > Reo(L). Then for every h € L, (L{(R™)) the
equation (6.3) possesses a backward solution u(t), t < 0 which is unique in the class
u € L, (W.7"%(R")). Thus, a linear operator

(6.5) T+ Ly (L) = Loy (W29, u(t) = (T4h) (1)

is well defined for every u > 0. Moreover, there is a positive exponent € > 0 such
that

66) TR0, Bl 0 <
<G sy 9100 (sup emseslngs), B, )

$E(—00,t] zER™
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where the constant C), is independent of o and t.

Proof. Note that due to the smoothing property for solutions of the linear equation
(6.3) (see Propositions 2.1, 2.2 and Theorem 2.3) it is sufficient to deduce the
estimate (6.6) only for W!?-norm in the left-hand side (instead of W2 #:¢-norm).
Note also that without loss of generality we may assume that v = 0.

Let us consider for the first the case where h € Ly (L*(R")) (the general case will
be reduced below to this one). It is well known (see e.g. [30]) that the operator £
generates an analytic semigroup in L?(R") and consequently, due to the spectral
mapping theorem, o(e£)\{0} = e”(¥) (see e.g. [9]). Note also that according to
our assumption Rea(L) < 0 (y = 0!) therefore there is a positive v > 0 such that
Reo(L) < —2v. Thus, the spectral radius of the exponent e* satisfies the inequality

(6.7) ref) <e ™ <1

and consequently, the Duhamel formula

¢
(6.8) v(t) ::/ eLt =) p(s) ds
— 00
defines a solution v € Lo (L*(R™)) which satisfies the estimate
(6.9) lo®)llr2@n <C sup e T A(s)||L2@my, t <0
$E(—00,t]

Moreover, this solution is unique in the class Lo (L?).
The estimate (6.9) together with a standard (L2, W!-2)-smoothing property for
the solutions of (6.3) yield

(6.10) @2 <C1 sup e IIh(s)lo,2

SE(—00,t]
It is convenient for us to write the last estimate in the following equivalent form:

(6.11) sup e " [u(s)[12 < Co sup e |R(s) o,
SE(—00,t] S$E(—00,t]

In order to reduce the general case h € Lo(L}) to the one considered above we fix
an arbitrary zp € R” and introduce a new unknown function wy, (t) := v(t)¢- 4.,
where ¢, , () = e==(1+lz=20/)"* 3nd & > 0 is a small parameter which will be
specified below. Note that the weight functions &E,zo are equivalent to ¢. ., but
smooth and satisfy the following conditions

(612) |vx(£s7xo| S 05(5579007 |D2$6,m0| S 052(557950
It is not difficult to verify that the function w,, satisfies the equation
(6.13) Oy — LWey = be woh + K1 (X)W + Ko(2)Vowey 1= ha, (1)

Moreover, the estimates (6.12) imply that |K;(x)| < Cae.
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Evidently h,, € Lo(L?), consequently the estimate (6.11) yields

(6.14)  sup e U Jugy (s)lhe < sup e T Ihgg ()02 <
s€(—o0,t] sE(—00,t]

<0 sup e g g0 h(s)llo2 + Cae sup e lwgy ()12

$E(—00,t] sE(—o0,t
Fixing in (6.14) € > 0 small enough we derive that

lo(t), Byylh2 < C sup e 9o pu(s)l1 2 <
SE(—00,t]

<Cp osup e sup {¢. a0 (2)]|0(s), BLll1 2}
s€(—o0,t] zER™

The estimate (6.6) is proved. Applying the operator sup;cp_ e~ 7" sup, cp~ to the
both sides of the inequality (6.6) we derive, using (1.4) that

(6.15) ol -y < Csllblle e

Lemma 6.1 is proved.

Corollary 6.1. Let the assumptions of Lemma 6.1 hold and let ¢ be a weight
function which satisfies (1.1) with a sufficiently small rate of growth. Then the
operator T, constructed in Lemma 6.1 is bounded as the operator from LY(LZ,d)) to

Ly (W)
Indeed, this assertion is an immediate corollary of (6.6) and (1.4).
Let us study now the homogeneous problem (6.3) (the case h = 0).

Lemma 6.2. Let the spectrum of L satisfy the assumption (6.2). Then there exist
¥>0,0>0,&€R, e R and the operator Py : B, ¢y — LW(Wf’q(]R”,(Ck))
(where the space By ¢, := By, (R?,C) is defined by (4.15)) such that

1. For every ug € B, ¢, (R™) the function v € M(Wfq(R")) defined by v(t) :=
P (uo)(t), t <0 is a solution of (6.3) with h = 0.

2. 2y > Reo(L).

3. Let Sy(uo) := Py(uo)(0) and let .z := ﬁ is the orthogonal projection to
the vector e, then I1. S, (uo) = uo for every up € By g, .

4. For every N € Ry and ug € B, ¢, the following estimate holds

1
1 t 1
(010) 1P, (un)(0, 5 lnq < One™ sup { ot o, B |

Moreover, the constant C is independent of zo € R™.

Proof. Applying the z-Fourier transform to homogeneous equation (6.3) we will
have the equation

(6.17) 8,0(t) — L(€)v(t) =0

where £(¢) := —alé]? + B. Note, that the assumption (6.2) implies that there is a

point & € RF and A € o(L(&)) such that ReAg > 0. Moreover, without loss of
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generality we may assume that Re U(E(f)) < Ao + ¢ for every £ € R* | where £ > 0
is small enough to satisfy € < Re o /3.

Let us denote by X(f) the spectrum of U(E(f)). Then (since the pencil 2({) is
polynomial with respect to &) X(f) is an analytic function with respect to £ on the
corresponding k-sheeted Riemann surface. Moreover, without loss of generality we
may assume also that & # 0 and is not a branch point for this function. Denote by
2o (€) the analytic branch of X(f) in the neighborhood of &, such that Xo(fo) = No.

Thus, we have proved that there exists a neighborhood Bg’ of & and smooth

functions Ao : B’ = Cand ey : By — C* such that

~

(6.18) L(€)eo(€) = No(E)eo(€), eo(€) #0

Evidently, we may fix 7o > 0 in such a way that Re Xo(f) > Re )y — ¢ for every
§ € B{? and ro < || Moreover, since eg(§o) # 0 then either Reeo(éo) # 0 or
Imeg (&) # 0. Define e := Reeg(&) if Reeg(&o) # 0 and e := Imeg(&p) otherwise.
Then it it is possible to normalize the eigenvector eg(&p) in such a way that

(6.19) leeo(§) =1, for every £ € B

(decreasing the radius o if necessary).
Let us fix now the exponent ¢ > 0 and the corresponding space B, ¢, in such a

way that supp 5 C B2§/2 for every ¢ € B, ¢, and define the solution of (6.3) by the
expression

(6.20) B(t,€) = @G (E)eo (€)

We claim that the operator Py : ¢ — v, where v = Re Xo — e, defined by (6.20)
satisfies all assumptions of the Lemma.

Indeed, define a cut-off function ¢ € C§°(R™) such that (&) = 1if € € BES/Q
and ¢(§) = 0if § ¢ B;. Then the formula (6.20) can be rewritten in the following
equivalent form:

(6.21) 0(t,€) = "W (8, )P(€), € €RE

where U(t,£) := e(XO(g)*XO“)tw(f)eg (€). Moreover, it is not difficult to verify that
due to our construction of functions v, Ay and eq

(6.22) [ DM opde <o

uniformly with respect to t € R_. Thus, the operator P, can be represented as a
convolution operator

(6.23) Py (uo)(t) = € (Fg 10 (t,6)) xuo, o € B,
Moreover, it follows from (6.22) that the convolution’s kernel K (t,z) in (6.23)

satisfies the estimate

1

(6.24) K (t,2)| := |(F (¢, ) ()] < ON T3 ey 72
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for every N € Ry and consequently

(6.25) lu(t, z0)| < Cnet sup 0, B llo.oc
T rere (14 |z — oPN)!/2

The estimate (6.16) is an immediate corollary of (6.25) and the smoothing property
for the linear equation (6.3). (Note that this estimate implies particularly that
the operator P, is really a bounded operator from B, ¢, to L, (W;?)). The rest
properties of P, announced in Lemma 6.2 are evident. Indeed, the fact that for
every ug € B, ¢, v := Pyug is a solution of (6.3) follows from the representation
(6.20). The second assertion is a corollary of our choice of the exponent € (2y =
Q(XO —g) > Xo+¢e > Re o(L), because £ < X0/3) and the third one is a corollary of
the normalization (6.19). Lemma 6.2 is proved.

Corollary 6.2. Let the assumptions of Lemma 6.2 hold. Then for every weight
function ¢ with a polynomial rate of growth (see (1.18)) the following estimate is
valid:

(6.26) 1P (o) (Dllwzis @my < Ce™lunllrz= | @m0 € Bog,

where the constant C is independent of the concrete choice of the weight ¢ satisfy-
ing (1.18).

Indeed the assertion of the lemma is an immediate corollary of (6.16) and (1.19).

Recall we have constructed the complex valued solution P, (ug) of the equation
(6.3) but we need in the following only the real valued solutions of this equa-
tion. Since the operator £ has real coefficients then Re P, (uo) is the appropriate
real-valued solution. Moreover, the assertions of Lemma 6.2 remain valid for this
operator except of p. 3, which should be replaced by

(6.27) II.S,(uo) = Reug, for every ug € By,
Note however, that Reug, ug € B, ¢, if and only if ug = 0 (due to the fact that by

definition supp i C Bf) and ro < |&]. Moreover, the following is true.

Proposition 6.1. Let \/no < |&|. Then a function ug € B, ¢, (R,C) is uniquely
determined by it’s real part Reuy. Moreover, for every N € Ry the following
estimate s valid:

||RGU,0,BI||OOO
6.28 <Cn s Lo
( ) luo(zo)| < NwélkPn (1 + |7 — 2o|2N)1/2

where the constant Cn is independent of o € R and consequently the spaces IBGREO
and B, ¢, are isomorphic. We denote this isomorphism by R.

Proof. Indeed, since Gg € B, _¢, and /no < || then
supp o N suppy = &
Let 1 (€) € C§°(R™) be a cut-off function, such that (&) = 1if £ € & + [0, 0]
and (&) =0if £ € =& + [—0,0]™ and let K(z) := ngmgb. Then
(6.29) ug = 2K * Reug

and |K(z)| < On(1 + |z|?V)~'/2. The estimate (6.28) is an immediate corollary
of (6.29). Proposition 6.1 is proved.
We will write below P, instead Re P, and S, instead of Re S, where it will not

lead to misunderstanding.
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Corollary 6.3. Let ¢ be a weight function with the polynomial rate of growth (see
(1.18)) and let the assumptions of Lemma 6.2 hold. Then the following estimate is
valid:

(6.30) luollzg, < ClIS,uollzz, . uo € Bog,

where S,ug = (Re Pyug)(0).

Indeed, the assertion of this corollary follows from (6.27) (6.28) and (1.19).
We are in a position now to formulate the main technical result of this Section.

Theorem 6.1. Let the assumptions of Theorem 3.1 be valid and let in addition the
equation (2.1) can be represented in the form (6.1) with the exponentially unstable
linear part (the assumption (6.2) is also assumed to be satisfied). Then there exists
r>0 and a C'-map

(631) Z/IO . B(07 r, IBa’,ﬁo (Rn7(c)) — ‘/4

where B(0,7,B,¢,) is a r-ball in the space B, ¢, centered in 0 and the constants
0,&o are the same as in Lemma 6.2, and for every ug € B(0,7,B,¢,) the following
estimate s valid

(6.32) 12 (o) — S5 (o) lla, (mm) < Clluolly e ()

Moreover, this map is a Lipschitz continuous embedding in the local topology in the
following sense: for every N € Ry and every xo € R* we have the estimates

_ 1
o (1) = Uo (1), BE, 12, < O sup, cq it 2Beitess

(6.33) e B
' luy — Bl I <C lltdo (u1) —Uo (u2), B2 l2.q
Uy — U2, Dyll0,00 S UN SUDzc0 (I+|z—zo2N)1/2

which are valid for every ui,us € B(0,7, By, ).

Proof. The proof of this theorem is based on the implicit function theorem and on
the following lemma.

Lemma 6.3. Let f € C? satisfies £(0) = f.(0) = 0 and let the exponent u > 0
be fized in such a way that the embedding W2 " C C holds. Then the Nemitskij
operator Fu = f(u) belongs to the space C* (L, (W "), Lo, (L{)).

The assertion of this lemma can be verified in a direct way (see [36], for example).
Now we are going to find the backward solutions of the problem (6.1) near zp = 0
equilibria point using the implicit function theorem. To this end we rewrite this
equation in the form
O — Lu = —f(u), t<0

Let us fix  such as in Lemma 6.2, y as in Lemma 6.3 and consider the equation
(6.34) u+ Ton f(u) = Pyug, u € Ly (WM

where uyp € B,¢, and o satisfies the conditions of Lemma 6.2. Note that every
solution of (6.34) is simultaneously a solution of the equation (6.1) hence it is
sufficient to solve (6.34) in L, (W, 7).
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To this end we introduce a function F : L, (W *7) x By ¢, — L, (W7 ") by
formula y
F(u,up) = u + Tay f(u) — Pyug

It follows from Lemmata 6.1, 6.2 and 6.3 that the function F belongs to the
class C (I, (W, 7"7) x By, , L, (W, ") and D,F(0,0) = Id. Hence due to
the implicit function theorem (see [31] for instance) there exists a neighborhood
B(0,7,B,¢,) and a C''-function

U : BO,r,Byg,) — Ly (W)

such that F(U(ug),uo) = 0 and consequently U (ug)(t) is a backward solution of
the problem (6.1). The equation (6.34) and Lemmata 6.1-6.3 imply now that

(6.35)  [[U(uo) = Pyuolly,, wz-rq) < CIF U o))y, (1) <

< Ch||U (uo) ) < Colluollz,

2
Ie. wzne
Recall that the function u(t) := U(uo)(t) satisfies the equation (6.1). Consequently,
due to the smoothing property for the nonlinear equation (6.1) (see Proposition 2.2
and the end of the proof of Theorem 2.1) and due to the fact that f(0) = 0 we
derive that

lu(t + Dlle, < Qlu(®)llyy2-rma) ()]l y2-r0

and therefore
(6.36) 1U(t0) I, (0) < QU0 | gyz-ra ) I )l gya-sry < Cllualls, ,

for every ug € B(0,7r,B,¢,). Analogously, the function w(t) := U(uo)(t) — Pyuo
satisfies the equation

dw(t) — aA,w(t) — Bw(t) = —f(ul(t))

Applying the smoothing property to this equation and using (6.36) and the fact
that f(0) = f'(0) = 0 we deduce from (6.35) that

(6.37) 1IU(u0) = P ttolly ) < ClU(0) = Pl y-re +

+ Cl|ed (uo) ) < Cilluollz,

I wa=ss
Let us define now Uy (up) = Z/I(uo)|t:0. Then (6.37) together with the definition
of S, imply the estimate (6.32). The assertion Uy(B(0, o, By e,)) C A follows
immediately from description (3.2) of the attractor A and from the fact that the
solution u(t) = U(ug)(t) of the problem (6.1) which is defined for the first only for
t < 0 can be extended due to Theorems 2.1 and 2.2 to a complete solution u(t),
t € R and u(0) = Up(ug)-

Thus, it remains to verify the estimates (6.33). Let u},ud € B(0,7,B,¢,),
ul(t) := U(u})(t) be the corresponding backward solutions of (6.1), vy := uy — u
and v(t) := u'(t) — u(t). Then this function satisfies the equation

(6.38) v + Tory (F(ut) — f(u?)) — Pyvo =0
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Let us fix N € Ry, o € R” and the corresponding weight function Oy 4, (z) =
(14]z—20[*V)~1/2. The equation (6.38) together with Lemma 6.1 and Corollary 1.4
imply that

(6.39) llo = Psoll,_ 2

b;u,q ) S CN“,f(ul) - f(’U’Q)”]LQ-Y(Lq )
ON Lz

bON 2

where C'y is independent of zg.
Recall that f € C? and f(0) = f'(0) = 0, consequently

(6.40) Fauty = F)] < QUut| + e (lu'| + [u ) — u?|

for a some monotonic function @). The estimates (6.40) and (6.36) imply that
641) 1) = S0 eanirg,, ) < @ (10 loyameny + 107 gz ) %

x (el gy + %l =) Bolle iz ) <

< Q(20r)20r||v||L7(Wb2;u,q )
ON,2q
for every B(0,7,B, ¢, ). Decreasing r if necessary we may assume that

(6.42) NIf(u!) = F(u”)llLa,

Lonng) S
<0/ (o= Paolluzzge 1Pl gz )
ON, 2o YN,z

where § = §(r) can be fixed arbitrarily small (if » > 0 is small enough). The
estimates (6.39) and (6.42) yield that

(6.43) o = Pyvole qwaes ) < SIPswoll, g

Applying (6.26) to the estimate (6.43) (and assuming that r is sufficiently small
that § < 1/2) we derive that

(6.44) A o

Note that the function v(t) is a solution of (2.57), consequently due to (6.26), (6.44)

and due to the smoothing property (2.61)

(6.45)  [[tho (ug) — Uo (ug)ll, o, < A (ug) —URly (w2sra ) <
> ON, 2

< CHv”L'y(WbZ.;]‘\‘;;o) < C11||’U0||L§?9N/q.20

Since the constant C; in (6.45) is independent of zo then the first estimate of
(6.33) is an immediate corollary of this estimate. Thus, it remains to prove only
the second one. In order to do so we recall that II. S,uo = Reug (see Lemma 6.2)
and consequently (due to (6.30))

(6.46) [1Syvollwz e 2 CliSwollrzs, 2

> CillRevollgs, 2 Callvollzg

b’sN/q.mo

36



The estimates (6.43) and (6.26) imply that
(6.47) IS, mlwzzee < 10Olouy ., +Collwllizs,

Combining (6.46) and (6.47) and fixing § > 0 in such a way that C§ < C2/2 we
finally obtain that

(6.48) ||'UO||L§?9N/Q 0 S 03”7)(0)“‘1)5,91\,,10

Theorem 6.1 is proved.

Corollary 6.4. Let the assumptions of Theorem 6.1 be valid and let ¢ be a weight
function with the polynomial rate of growth (see (1.18)). Then the map Uy real-
izes the Lipschitz continuous homeomorphism between B(0,r,B,¢,) and it’s image
Up(B(0,7,Bs¢,)) in the following sense:

(649)  Cullub—udlluz, < Uo(ub) = Uo(ud)lloy oo < Callub — udllzie,
Indeed, the estimate (6.49) is an immediate corollary of (6.33) and (1.19).
Remark 6.1. Recall that the spaces B, and B, ¢, are isomorphic and the mul-

tiplication operator Ge,up := e0-Ty . realizes this isomorphism. Moreover, since
le?o-] = 1 then this isomorphism preserves the norms ||-, BY ||o,00, particularly
Geo B(0,r,B,) = B(0,r,By¢,) and the operator

(6.50) Uy == Uy o Ge, : B(0O,7,B,) — A

realizes a Lipschitz continuous embedding which satisfies the estimates (6.49)
Corollary 6.5. Let {Th,h € R"} be group of spatial shifts: (Thu)(z) := u(x + h)
and let K := B(0,r,B, (R*,C)), where r is the same as in Theorem 6.1. Then,

evidently, ThA = A and T, K = K. Moreover the map Uy : K = A commutes with
this group:

(6.51) Thldo(uo) = Uo(Thuo), for every h € R™
Indeed, the assertion (6.51) is an immediate corollary of our construction of the
map Up and of the uniqueness part of the implicit function theorem.

Corollary 6.6. Let uj,u} € B(0,1,By¢,) and p < r (where r,0,& are the same
as in Theorem 6.1). Then for every R > Rg

(6.52) 1tho (ug) — Un (ug) 2.0 gy > Ll Re(ug — ug)ll = () — Cii?
where C and L are independent of R.
Indeed,
1to (ug) — Uo (ud) |, () >
> [18yug = Syuglle,(r) — IUo(ug) = Syuplle, ) + Uo(ug) = Syup|le, ) >
> L||Syug — Syugllp~(sr) — Cilllugllg, ., + ludllz, ) >
> L||Re(ug — ud) || g (pry — 2C1 44°

Here we have used the fact that II,Syup = Reug.
Now we are in a position to obtain the lower bounds for the e-entropy of the
attractor A of the equation (6.1).
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Theorem 6.2. Let the assumptions of Theorem 6.1 hold. Then the attractor A of
the problem (6.1) possesses the following entropy estimates:

1 1 1
(6.53) @Rﬂnggm(AﬂfﬂBﬁ)gCﬂR+ngWm;,5§%<1

Moreover, for every § > 0 there exists Cs > 0 such that

1 n+1—4 1 n+1
(6.54) Cs (m g) < H. (A, W,f"I(Bg)) <C <ln g)
Proof. Indeed, let € > 0 be small enough, p = (25L)1/2 < r and functions v}, v €

B(0, u, ]Bffgo) be such that

(6.55) o} = 03Il oy > =/L

Then it follows from (6.52) that

(6.56) [Uo(Rug) — UO(RU§)||W§"1(B§) >e/2

where R is the isomorphism constructed in Proposition 6.1.
The estimates (6.55),(6.56) together with the fact that Uy(Rv{) € A imply that

2,4/ pR € \Y? L Re R
(657) Hpu (AWPB)) 2 By (BO,(557) " Bie) GuB) ) =
= Hyc./pyir2 (B(0,1,B ), Cy(BE))

o,€0

The estimates (6.53) and (6.54) are an immediate corollaries of (4.13) and (4.14)
(see also Remark 4.2) and Theorem 5.1. Theorem 6.2 is proved.

Corollary 6.7. Let the assumptions of Theorem 6.2 hold. Then

(6.58) 0<Cyln

o | =

— 1
< H.(A) < Cy lng
and consequently

(6.59) 0<Cy < hgp(A) < Cy < 0

§7 THE SPATTIAL COMPLEXITY OF THE ATTRACTOR AND SPATIAL CHAOS.

In this Section we continue to study the attractor of the spatially homogeneous
system (6.1) in @ = R™ under the assumptions of Theorem 6.1. Recall that the
group {7, h € R"} of spatial shifts acts on the attractor of (6.1)

(7.1) ThA=A, (Thu)(z):=u(z+h), heR

The main aim of this Section is to study the action of this group on the attractor

from the dynamical point of view. Under this approach the semigroup (7.1) will be

treated as a dynamical system with multidimensional ’time’ h € R". (Note that in
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the particular case n = 1 we obtain a usual dynamical system with one-dimensional
time.)

As a simple corollary of the estimates obtained in the previous Section (Theo-
rem 6.2) we verify that the topological entropy hs,(A) of the semigroup (7.1) is
infinite and define a new quantitative characteristic /f\Lsp(.A) of the complexity of
dynamics which is occurred to be finite and positive for the case of (7.1).

Recall that the usual way to indicate the chaotic behavior of a dynamical system
Th : A — Ais to find a closed invariant subset M C A in the corresponding phase
space and construct a homeomorphism 7 : M — M such that

(7.2) T:(Th|M,M)—>(fh,M), , Thi=To0Tpor "

where (fh, M) is a some model example of the dynamical system the chaotic be-
havior of which is evident. Note also that usually the homeomorphism (7.2) is
constructed only for the appropriate discrete subgroup of T}, and the model exam-
ples (fh, M) are the appropriate Bernulli shifts (see e.g. [21]).

It is worth to emphasize that the (multidimensional) symbolic dynamics with
finite number of symbols (Bernulli shifts) are not adequate in order to understood
the spatial dynamics (7.1) because the topological entropy of such shifts is finite
but in our situation we have the dynamics with the infinite topological entropy.
That is why we introduce below a new model example of chaos (fh,/\/l) which is
close to the standard Bernulli shifts but adopted to the case of infinite topological
entropy and construct the Lipschitz continuous embedding of this model to (7.1).

We start our exposition with the following definition.

Definition 7.1. Let ¢(z) > 0, ¢ € Cyp(R™) be a weight function which satisfies
lim|;| o ¢(x) = 0 and let A be a compact set in ®; 4 invariant with respect to Tp,
action. Then for every R € R, we define a new metric on A by formula

(73) dR7¢($7y) = sup ||Th$ - Thqu:‘b,d,: T,y € A
he[—R,R]

Define now the following characteristics:

- 1

(7.4) hsp(A, @) = hsp(A, ¢, Th) := Eh_rf(l) h}rin—fol:)p WH‘S (A, drg)
N . 1 1

(7.5) hsp(A, @) = llf?j(l)lp m hgljolip WHE (A, dR,0)

Remark 7.1. The quantity (4.4) coincide with the definition of the topological
entropy for the group T, : A — A (adopted to the n-dimensional case) (see e.g.
[21]) and (7.5) is one of possible generalizations of this concept for the case where
the topological entropy is infinite. That is why we will call (7.5) as the modified
topological entropy.

The following simple lemma is very important for our purposes.

Lemma 7.1. Let the above assumptions hold. Then for every ¢ such as in Defi-
nition 7.1

(T6)  hop( A 6) = hp(A) 5= T limsup oo
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and analogously

(7.7) hep(A, @) = hep(A) :=1i im sup

2,q/7_ n
EI—I>I(1)11'1]./€1R_>OO (2R)nH€(AﬂWb ([ R,R] ))

Particularly these quantitatives are independent of the choice of the weight ¢.

Proof. Indeed, since ¢(z) — 0 as |z| — oo then for every € > 0 there is L = L(e)
such that ¢(z) < € for |z| > L(g), consequently

(7.8) H. (A, drg) < Hejo (A, Wy (=R = L(e), R+ L()]")
for the appropriate C' which is independent of R. Therefore

(7.9) hsp(A, ) < hep(A) and hyp (A, ¢) < hgp(A)

The opposite inequalities follow from the evident estimate

(7.10) sup  ¢(xz +h) > ¢(0) >0, for|z;| <R
he€[—-R,R]"

Lemma 7.1 is proved.

Remark 7.2. It is well known (see e.g. [21]) that the topological entropy hsp(.A)
depends only on the topology on A and independent of the choice of the metric
preserving the topology. Note, however, that the modified topological entropy
/f\Lsp(A) does not possess this property and rigorously speaking is not a topological
invariant. N

Note also that hg, is evidently a Lipschitz invariant, i.e. preserves under the
Lipschitz continuous homeomorphisms. Moreover, if 7 is Holder continuous with
the Holder constant 0 < o < 1 then

(711) ap(r(M) < Ty (M)

(compare with the fractal dimension).
The following theorem justifies our choice of generalization of the topological
entropy.

Theorem 7.1. Let the assumptions of Theorem 6.2 be valid and let A be the
attractor of the equation (6.1). Then the group {Th, h € R"} of spatial shifts on the
attractor has the infinite topological entropy

(7.12) hsp(A) = 00
Moreover, the modified topological entropy of it is finite and strictly positive:
(7.13) 0<Cy < hgp(A) < Cy < 0

Indeed, the assertion of the theorem is an immediate corollary of Corollary 6.7
and Lemma 7.1.

Let us study now the spatial chaos generated the action of {T},h € R"} on
the attractor A. We give for the first the model construction (7.2) for the case of
continuous dynamics (h € R™) and after that we simplify this model for the case
of discrete dynamics (h € Z™).
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Theorem 7.2. Let the assumptions of Theorem 6.1 be valid and let r and o be
the same as in Theorem 6.1. Let also K be the ball B(0,r,B,) endowed by the
local topology of L2 (R™). Then the map Uy : K — A defined in (6.50) realizes a
homeomorphism

(7.14) Uo : (Th,K) — (Th, Uo(K))

Moreover, this homeomorphism is Lipschitz continuous if we endowed the spaces K
and A by the topology L5, and @y g0 respectively (where ¢ is an arbitrary weight
function with the polynomial rate of growth) and consequently this homeomorphism
preserves the modified topological entropy:

(7.15) 0 < C1 < hyp(K) = hap(Uh(K)) < Cy < 00

Indeed, the assertion of this theorem is an immediate corollary of Theorem 6.1
and Corollaries 6.4 and 6.5.

Thus, the r-ball K of the space B, together with the group of spatial shifts
{Th,h € R*} acting on it can be considered as a model example for the topological
description of the spatial chaos in the reaction-diffusion systems in unbounded
domains. Note however that this model is rather complicated by itself and it seems
reasonable to simplify it. To this end we restrict ourselves to consider only the
action of a discrete subgroup {T},h € Z"} of the group of spatial shifts and use
the Kotelnikov-Cartrait interpolation formula for representing the functions from
B, (see e.g. [22], [37]).

Proposition 7.1. Every function u(z) from the class B, can be represented in
the following form:

(7.16) u(z) = Tieznu(0k)gpk(z), p >0

and

— s
where § = P

sin p(z? — 0k7) - sin(o’ + p)(z? — Ok7)
o0+ ) = 5k)?

(7.17) gk () =107,

Moreover, g, 1 € By 12,.

Let D := {z € C: |z| < 1} be a unitary disk on the complex plane and let
M = I”" be the space of all functions v : Z"™ — . We endow this space by a
Frechet topology generated by the following system of seminorms:

(7.18) ||’U5B[€z||07oo ‘= SUPjezn |II<R lv(@)]

and denote the space thus obtained by M,. (It is evident that M, is a com-
pact metric space and it’s topology coincide with the Tikhonov’s topology on the
Descartes product I”?"). The spaces M; and M, 4 where ¢ is a weight function
can be defined analogously.

Fix now o', p > 0 in such a way that ¢’ + 2p < o and define a map x : M — B,
by the expression

(7.19) k) =Y v(l)gpu(z)
lezn

where the functions g,; are defined in (7.17). Then the following is true.
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Lemma 7.2. Let the above assumptions hold and let 0 < v < 1. Then

(7.20) |5(v) ()] < C sup [p(@)] (T (1 + a7 — 17]2)) 2
lezn

Moreover, for every R > /n

(7.21) 1%(v), B3 lo.c0 > Ilv, Byllo,co

Proof. Indeed, the estimate (7.21) follows immediately from the fact that x(v)(dl) =
v(l) for every I € Z (see (7.16) and (7.17)).
The proof the estimate (7.20) is based on the evident estimate

C

. — €™ xzeR?
1+ 27 = 17P) v

(722) 9040 < g

and also can be verified in a direct way.

Corollary 7.2. Let the above assumptions hold. Then there is a constant C =
C(o',p) such that

(7.23) lM)llLgemny) < C

Moreover, for every weight function ¢ with a polynomial rate of of growth v < 1
(see (1.18)) the following estimate is valid: Then

(7.24) Cillvllamy o < NE@)Ege, < Callvlla,

The assertions of this corollary follow from the estimates (7.20), (7.21) and (1.19).
Let now o, > 0 be the same as in Theorem 6.1 and 7.2. Then the estimate
(7.23) implies that the map

(7.25) R(v) == %n(v),v eM

where C' is defined in (7.23) realizes an embedding M to K. Moreover, the esti-
mate (7.24) remains valid for % as well and shows that this embedding is Lipschitz
continuous in the appropriate metric.

Let us consider now a discrete subgroup T} := {Th,h = dl,1 € N} of the
semigroup of spatial shifts acting on K and on the attractor A of the equation
(6.1). Define also the action of this subgroup on the space M by formula

(7.26) (T5v)(m) :=v(im +1), veM, l,meZ"

Then the following is true.

Lemma 7.3. Let the above assumptions hold. Then the set k(M) is invariant with

respect to the discrete group T} and this group commutes with the map & defined by
(7.25), i.e.

(7.27) foTl =T) ok
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Indeed, the assertion of the lemma is an immediate corollary of the fact that

k(v)(81) = v(l).

Note now that the topological entropy h,, and the modified topological entropy
/f\Lsp can be defined analogously to Definition 7.1 for a discrete groups as well. More-
over, the assertions of Lemma, 7.1 and Remark 7.2 also remains valid for this case.

Consequently, (due to (7.24)) the map
(7.28) i 2 (Ty, M) = (Ty, (M) C (T}, K)

preserves the modified topological entropy

~

(7.29) hsp(Th, M) = hap(T}, R(M))

Thus, for the case of discrete group of shifts T}, we have constructed the Lipschitz
continuous embedding of the model dynamical system (7}, M) to the dynamical
system (T}, K). (see (7.2)).

Combining this embedding with the embedding, constructed in Theorem 7.2 we
obtain the following result.

Theorem 7.3. Let the assumptions of Theorem 7.2 be valid and let T}, be a discrete
subgroup of spatial shifts, h = 61, 1 € Z™. Then the map T = Uy o & realizes a
Lipschitz continuous (in weighted metrics described in Corollary 7.2) isomorphism
between M and T(M) C A which preserves the action of the group T} :

(7.30) 71 (T, M) = (T, T(M))
and consequently this homeomorphism preserves the modified topological entropy:
(7.31) 0 < hop(M, T}) = sy (r(M), T)

Thus, we have constructed the Lipschitz continuous embedding of the model
dynamical system (7}, M) to the dynamical system (7} ,.A), generated by the dis-
crete spatial shifts on the attractor A of the equation (6.1). Note, that if we restrict
ourselves to consider only the subset My C M of functions v : Z™ — {ay,---an}
where ay,--- ,ay € D are arbitrary different complex numbers from the unitary
ball, we obtain the standard symbolic dynamics with N symbols (multidimensional
Bernulli shifts). Consequently Theorem 7.3 admits to embed the symbolic dynamics
with N symbols into the discrete spatial shifts of the attractor A for every N € N.
Moreover, the following theorem shows that an arbitrary finite dimensional (dis-
crete) dynamics can be realized as a restriction of the discrete spatial shifts to the
appropriate invariant subset of the attractor.

Theorem 7.4. Let the assumptions of the previous theorem holds, let K C CN be
an arbitrary compact set in CV, and ¢ : K — K be a homeomorphism. Define a
dynamical system {G,,n € Z} on K by iteration of this homeomorphism

(7.32) Gnz:=(9)"z, z€ K
Then there exists a homeomorphism 7 : K — 7(K) C A such that

(7.33) ToGp=TppoT, N€EZL
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where §:= Ndey = N§(1,0,---,0) and 6 is the same as in Theorem 7.3.

Proof. Due to Theorem 7.3 it is sufficient to construct only the embedding of this
system to a model one (T}, M). Note also that without loss of generality we may
assume that K is a subset of N-dimensional polydisc K C DV. Let us define an
embedding 0 : K — M by formula

(7.34) 0(z)(1,12,--- ,1n) == Gn(2)g, wherel e Z",
lLh=nN+k, neZ, ke{0,1,---,N—-1}, ze¢ KcDV

It is not difficult to verify that 8 : K — 6(K) C M is really a homeomorphism
(since G, : K — K are homeomorphisms). Moreover, it follows from the definition
of 6§ that

(7.35) 0(Gpz) = Tyne,0(2), z€ K, neZ

The assertion of the theorem is an immediate corollary of (7.35) and Theorem 7.3.

Remark 7.3. For simplicity we have formulated and proved the embedding the-
orem 7.4 only for the dynamical system (G, K) with one dimensional 'time’ but
it’s generalization for the multidimensional case is straightforward.

§8 THE TEMPORAL EVOLUTION OF SPATIAL CHAOS AND
THE SPATIAL COMPLEXITY OF INDIVIDUAL TRAJECTORIES

In the previous sections we construct a number of various invariant with respect
to spatial shifts subsets B C A of the attractor the restrictions of {Th,h € R"} to
which demonstrate the chaotic behavior, have infinite topological entropy hsp(B) =
0o, positive modified entropy ?Lsp(B) > 0 and so on. Note however that all sets thus
constructed are not invariant with respect to the temporal dynamics {S¢,t > 0}
generated by the equation (6.1) (in a fact the image Uy(K) constructed in Theorem
7.2 belongs to an exponentially unstable manifold of zero equilibria point). Thus,
it seems reasonable to study the spatial complexity of sets S;B, t > 0, where B is
a spatially invariant subset of the attractor A.

We start with a trivial corollary of the estimates formulated in Theorem 2.3.

Lemma 8.1. Let the assumptions of Theorem 6.2 hold and let B be a compact in
®,,c invariant with respect to the spatial shifts {Th,h € R"} subset of the phase
space ®, of the equation (6.1). Then

(8.1) hep(SeB) < hgp(B), hsp(SeB) < hep(B), t>0

where Sy : @y, — Py, is a semigroup, generated by the equation (6.1).

Proof. Indeed, the set B is evidently bounded in ®, and consequently due to the
estimate (2.61) and (1.3) the semigroup S; is Lipschitz continuous in the space ®; 4
for every weight function which satisfies the assumption (1.1). But the (modified)
topological entropy does not increase under the Lipschitz continuous mappings (see
Remark 7.2). Lemma 8.1 is proved.

The main result of this Section is the following theorem.
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Theorem 8.1. Let the assumptions of Theorem 6.1 hold and let in addition the
matriz a in the equation (6.1) is normal, i.e.

(8.2) aa® =a*a

Let B be a compact (in ®;,.) invariant with respect to {Th,h € R™} subset of

the attractor A. Then the quantitatives hgy(B) and /}\Lsp(B) preserves under the
temporal dynamics:

(8.3) hsp(SeB) = hep(B) and  hep(SiB) = hyp(B), t>0

Proof. The assertion of the theorem is a corollary of the following Lemma which
claims that the semigroup S; is backward Holder continuous on the attractor with
the Holder exponent arbitrary close to 1.

Lemma 8.2. Let the above assertions hold and let uy(t),uz(t) € A, t € R be two
arbitrary solutions of (6.1) belonging to the attractor. Then for every 0 < a < 1
and every fized T > 0 there is € > 0 and a constant C = C(a, T,¢e) such that

(8.4) |u1(0) — u2(0), By |l2,¢ < C’szg e=ele=aol ||y, (T) — us(T), BLI§.,
x

The proof of this Lemma is based on the following convexity result, formulated
and proved in [2].

Proposition 8.1 [2]. Let H be a Hilbert space and B : D(B) — H be a linear
unbounded operator in it. Let alsov € C1([to,t1], H)NC([to, 1], D(B)) be a solution
of the following equation:

(8.5) 8w —Bv=Ptw, |P®)|lasm < Po

Assume also that B = By + B_ + B" | where By is a symmetric operator and B’
and B" are skew symmetric operators such that for every w € H

(8.6) (Byw, B w)g > = Brwlmlwllm — Bllwllz,
1B wllzr < AIBywllalwlm + Bllwllz

are satisfied. Let us define a new function

o (P(t)u(t), u(t))

68 =2l = [ el ds, 00 =2

Then the following inequality holds for every to <t <ty

(8.9)  I(t) < axl(te) + (1 — ax)l(ty) + B0 (1 — 0)2(8y2 + 48 + 2P?)

where

ej:4'yt1 +4~t

— €

(8.10) o4 1= P e

in (8.10) one takes the negative sign if l(to) < 1(t1) and the positive sign if I(to) >
[(t1).
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Corollary 8.1. Let the assumptions of Lemma 8.1 hold and let it be known in addi-
tion that the solution v(t) is defined on (—o0,t1] and remain bounded: ||v(t)||g < K.
Then for every u > 0 and t € (—oo,t1) there is a constant C = C(t,t1,p, K) such
that

(8.11) lu@ller < Cllu(t)ll, a:= et —p

Proof. Indeed, applying the exponent to the both sides of the inequality (8.9) and
taking into the account that —2Py(t —tg) < j;to P(s)ds < 2Py(t —to) we derive that

(8.12) lu®)llzr < Ot b1, o)t ** luta) 5
Since ||u(t2)||g < K then (8.12) implies the estimate
(8.13) lu@®)llr < C'(K, t,to, t1)llu(ts) ||

where & = min{l — a4,1 — ay}. Let us fix now t» = —N where N > 0 is large
enough. Then

(814) o = ]_ — Of+ = N 6747“17”

when N — oo. Therefore, for every u > 0 one can find N = N(u), such that
a>e (=t _ Corollary 8.1 is proved.

Let us prove Lemma 8.1 now. Indeed, let v(t) := uq(t) — u2(t) then this function
evidently satisfies the equation

(8.15) 0w = alA,v — Av — I(t)v

where [(t) := fol f'(sur(t) + (1 — s)ua(t)) ds. Recall, u;(t) are complete bounded
solutions belonging to the attractor 4, consequently due to Theorems 2.1 and 3.1
llui(t)l|c, (mm) < [Juills, < C and therefore the function /() is uniformly bounded:
1) |lc,mny < C1 and C is independent of u;.

Fix now an arbitrary zo € R” and consider a function w,, (t) := v(t)¢. ., where
the weight function qgsm is the same as in the proof of Lemma 6.1 and ¢ is a small

parameter. Then it is not difficult to verify that this function satisfies the equation

(8.16)  Oywy, (t) — alywy, () + K1 (2)we, (t) + Ka(2)Vawe, () + 1(#)w,, (t) =0

where

(8.17) Ky (z)w := (

(8.18)

Af(gsﬁto _ 2 |vit(557x0|2> aw

¢) 2
£€,T0 £,T0o

Ky (z)V,w = 2(5;;0quzg,mo.avxw = 2&;;0 Z Bming,moaaxiw
i=1
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Moreover, it follows from (6.12) that
|Ki(2)| + |V Ki(z)| < Ce

for the appropriate constant C'.
Let us verify now that the equation (8.16) satisfies all assumptions of Lemma
8.1. Indeed, let H := [L2(R")]*, Rw := Ko(2)V,w,

By =1/2(a+a*)A,—Xo—1/2(R+R*), B" :=1/2(a—a*)A,, B" := —-1/2(R—R")
and P(t)w := —Ki(x)w — I(t)w. Then evidently By is symmetric and B’ and B”

are skew symmetric. In order to verify the assumptions (8.6) and (8.7) we compute
firstly the operator R*:

(8.19) Rrw = =221 Vode o0 Vow — 2V, - (vmés,m(p;;()) a*w
and consequently
(8.20) (Bjw,B_w)=1/4((a+ a*)Aw,(a —a*)A,w) —
— (&;;Ovz&g,zo.(a —a")V,w,(a— a*)Azw) +
+ (Ve (Vabenodil, ) @, (a — a")Apw)
Since a is normal (see the assumption (8.2)) then the first term in the right-hand

side of (8.21) is equal to zero identically. Integrating by parts in the second term
we derive that

(8.21) (q};;ovxésm.(a —a")Vw, (a — a*)Axw) =
= <1/2(Va($: 3, Vade o) @ = ") Vaw, (a = a")V,w) < Ce[ Vol

It follows from the interpolation inequality, the regularity theorem for the Laplace
operator in R™ and from the fact that € > 0 is small enough that

(8.22) IVawllf < Cllwllwze@mllwle < CillBywllmllwlla
And finally due to the Holder inequality
(8.23) (Vz (VE(ZEE’IOQZ);;O) a*w, (a — a*)AIw) >
> —Cellwllml|Aswl|r > —Cocl| Byw||mllwl| #
Combining the estimates (8.20)—(8.23) we derive that
(Byw, B_w) > —y||Bywllallwlla, v=Ce

Thus, the assumption (8.6) is verified. Let us verify the assumption (8.7). Indeed,
since B" is a first order differential operator then due to (8.22)

824)  [IBwl < Ce (IVawllfy + lwll) < Cre(IBswllallwlla + llwlf)
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Thus, the assumption (8.7) is also verified.

Note also that u;(t) € A implies that ||ws,(t)||2®») < K where K is indepen-
dent of xy. Thus, all assumptions of Lemma 8.2 and Corollary 8.1 are verified and
consequently according to (8.11) with ¢; =T and t = —1

(8.25) [[wao (=1)llo.2 < Cle, u, T)||wao (TG

here a := e~ “=(T+1) — |, where g > 0 can be chosen arbitrarily small and the
constant C' is independent of zg.

Note also that since €, i can be chosen arbitrarily small then the Holder exponent
a < 1in (8.25) is arbitrarily close to 1.

The estimate (8.25) immediately implies that

(8.26) lo(=1), Bgyllo2 < C' (e, T) sup 10(T), Ba 5.2
2ER™

where « is arbitrarily close to 1 and € = e(a) > 0. The estimate (8.4) is an
immediate corollary of (8.26) and of the smoothing property (2.61). Lemma 8.2 is
proved.

We are in a position now to complete the proof of Theorem 8.1. To this end we
note that the estimate (8.4) implies that the restriction of ST| 4 on the attractor A
is invertible and for every weight function ¢ with a polynomial rate of growth and
for every 0 < o < 1 the operator S;1|A is uniformly Holder continuous with the
exponent «

(8.27) Syt AN®y 5 — AN By o

i.e. for every uy,us € A

(8.28) lur — uzlle, ,o < CO(T,a)||STur — StTusll3, ,
and consequently (due to Lemma 7.1 and the estimate (7.11))
(8.29) hsp(B) < ahigy(STB), and hgp(B) = hey(SrB)

Passing to the limit & — 1 in (8.29) and taking into the account the result of
Lemma 8.1 we derive (8.3). Theorem 8.1 is proved.

Remark 8.1. Recall that we construct in Section 7 the set B = Up(K) C A the
restriction of spatial shifts on which is isomorphic to the model dynamics (7}, K)
(or to (T}, M) for discrete spatial shifts). The estimate (8.28) implies now that the
set STB C A is also homeomorphic to (T}, K) (or (T}, M) respectively). Thus, the
spatial chaos constructed in Section 7 preserves under the time evolution {S;,t €

Ry }.
Let us study now the spatial complexity of individual solutions u(t) € A of the
equation (6.1). To this end we need the following definition.

Definition 8.1. Let up € A. Denote by Hp,(uo) the hull of this point with respect
to the spatial shifts:

(8.30) Hsp(ug) 1= [Thuo, h e ]R”](bloc

where []®,,. means a closure in the space ®;,¢, and define the quantitatives hgp(uo)
and hgp(ug) by the following expressions:

(8.31) hsp(uo) := hsp(Hsp(uo)),  hsp(uo) 1= hsp(Hsp(uo))
(see Definition 7.1).
The following Corollary shows that the quantitatives (8.31) are constants along
the trajectories of (6.1).
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Corollary 8.2. Let the assumptions of Theorem 8.1 be wvalid. Then for every
ug € A the following is true:

(8.32) hap(Sitio) = hap (o), hap(Setio) = hap(u), >0

Moreover, the quantity Esp(u()) is finite for every ug € A and there is a point ug € A
such that

(8.33) hap(tio) = 00,  hgp(ug) > C >0

Proof. Indeed, the assertions (8.32) are immediate corollaries of Theorem 8.1. Thus,
it remains only to verify the existence of a point ug which satisfies (8.33). To this
end we recall that due to Theorem 7.3 it is sufficient to find a point vy € M such
that it’s hull (with respect to discrete shifts group {T7,h € Z"} has a positive
modified topological entropy. But it is not difficult to verify that the space M
possesses a topologically transitive orbit, i.e., there exists vy € M such that

(8.34) M = [Thvo,h € 27,
Fixing now ug := 7(vg) C A, where 7 : M — A is defined in Theorem 7.3 we obtain
a point of A which satisfies (8.33). Corollary 8.3 is proved.

Remark 8.2. It follows from the proof of Corollary 8.2 that there is a point
up € A with an extremely complicated spatial structure. Particularly (T}, M) C
(T}, Hsp(up)) and consequently due to Theorem 7.4 any finite dimensional dynamics
can be realized by restricting the discrete spatial shifts group to the appropriate
subset of the hull H,,(uo) of this point.

In conclusion of the paper we illustrate the obtained results on the particular
case of Ginzburg-Landau equation.

Example 8.1. Consider the equation
(8.35) Ou = (1 +ia)Ayu+ Ru — (1+if)ulul*’, = €R"

where u = wu(t,z) = wui(t,z) + iua(t,z) is a complex valued unknown function
a,f €R, R>0and o >0 (see [25] and references therein).

It is not difficult to verify that our monotonicity assumption f'(u) > —C is
satisfied if

(5.36) o < Y22

the rest of the assumptions of (2.2) are satisfied for every «, 8 and o > 1/2. The
growth restriction (2.3) is valid for every o if n < 4 and for o < 2/(n —4) if n > 4.

Thus, for n < 4 Theorems 2.1, 2.2 and 3.1 give the existence of solutions for
(8.35), their L*°-bounds and the attractor’s existence if (8.36) is satisfied (o is
arbitrary and o > 1/2).

Note that zero equilibria point v = 0 of the equation (8.35) is evidently expo-
nentially unstable if R > 0. Thus, the assumptions of Theorem 6.2 is also satisfied
(if n <4, (8.36) is valid, o > 1/2 and « is arbitrary) and consequently the entropy
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of the corresponding attractor possesses the upper and lower bounds (6.53) and
(6.54).

Note also that the assumption (8.2) is also evidently satisfied for the equation
(8.35) (written as a system with respect to real valued unknown variables u =
(u1,u2)). Consequently, the results of Sections 7 and 8 are also valid under the
above assumptions.

Remark 8.3. Note that we need the assumptions (2.2) and (2.3) in a fact only
in order to establish the L°°-bounds of solutions. If these bounds are known from
somewhere then the results of Sections 3-8 remains valid without the restrictions
(2.2) and (2.3). Particularly, the L*>-estimates for the complex Ginzburg-Landau
equation (8.35) under different assumptions on o, , 8 and n can be found in [19],
[26], [27]. Consequently, the results of the paper remains valid for (8.35) under that
assumptions as well.

8 July, 2000
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