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Introdu
tionIn this paper the following quasilinear paraboli
 boundary problem(0.1) � �tu = a�xu� �0u� f(u) + g; x 2 
u���
 = 0; u��t=0 = u0in the unbounded domain 
 (whi
h is assumed to satisfy some natural regularity
onditions formulated in x1) is 
onsidered. Here u = (u1; � � � ; uk) is an unknownve
tor-valued fun
tion, f and g are given fun
tions, �0 > 0 is a positive 
onstantand a is a given k � k-matrix with a positive symmetri
 part:(0.2) a+ a� > 0The longtime behavior of solutions of (0.1) is of a great interest now. It is well knownthat under the appropriate assumptions on the nonlinear term f(u) this behavior
an be des
ribed in terms of an attra
tor A of the 
orresponding dynami
al systemgenerated by (0.1) (see e.g. [4℄, [5℄, [25℄, [29℄). One of the possible 
hoi
es of theseassumptions is the following one:(0.3) 8><>: 1: f 2 C2(Rk ;Rk )2: f(u):u � �C3: f 0(u) � �Kwhere u:v means the standard inner produ
t in Rk (see e.g. [4℄, [16℄, and [19℄for the other possibilities). Note that (0.3) is ful�lled for many interesting fromthe physi
al point of view equations su
h as Chafee-Infante equation, Fitz-Nagumosystem, generalized Ginzburg-Landau equations and other ones.In the 
ase where the domain 
 is bounded the global attra
tors for (0.1) havebeen 
onstru
ted and studied under the various assumptions on f , a and g (see [4℄,[20℄, [29℄ and referen
es therein). Parti
ularly, the attra
tor's existen
e for (0.1)under the assumptions (0.2) and (0.3) has been proved in [34℄. It is also provedthere that if the nonlinearity f satis�es the additional growth restri
tion(0.4) jf(u)j � C(1 + jujp); p < 1 + 4=(n� 4)(for n � 4 the exponent p may be arbitrarily large) then the 
orresponding semi-group is di�erentiable with respe
t to the initial value u0, possesses the L1-boundsand the fra
tal dimension it's attra
tor is �nite.In the 
ase where the domain 
 is unbounded (e.g. 
 = Rn ) the situationbe
omes mu
h more 
ompli
ated. In this 
ase even the 
hoi
e of the appropriatephase spa
e for (0.1) is a nontrivial problem. Indeed, the phase spa
e L2(
) (asin the 
ase of bounded domains) seems to be not adequate be
ause a number ofnatural from the physi
al point of view stru
tures su
h as e.g. spatially periodi
solutions, travelling waves, et
. are o

urred to be out of the 
onsideration. As aresult the global attra
tor in L2(
) exists for (0.1) only for very parti
ular 
ases(see e.g. [5℄, [7℄, [14℄, [24℄). That is why, following to [18℄, [28℄, [33℄, we will 
onsiderthe equation (0.1) in the spa
es(0.5) W l;pb (
) := fu0 2 D0(
) : ku0kW l;pb := supx02
 ku0kW l;p(
\B1x0 ) <1g2



with the appropriate 
hoi
e of exponents l and p (here and below BRx0 means theR-ball in Rn 
entered in x0 and W l;p(V ) is a Sobolev spa
e of fun
tions whosederivatives up to the order l belong to Lp(V )). Roughly speaking the spa
es (0.5)
onsist of suÆ
iently regular fun
tions u0(x) whi
h remain bounded when jxj ! 1and 
ontain all stru
tures mentioned above.To the best of our knowledge the existen
e of the global attra
tor for (0.1) forthe unbounded domain 
 = Rn has been �rstly established in [1℄ and [5℄ (for as
alar 
ase k = 1 and under the great growth restri
tions p < minf4=n; 2=(n�2)g).These growth restri
tions have been removed later in [17℄ and [24℄. The 
ase ofsystems (k � 2) with a s
alar di�usion matrix a has been 
onsidered in [7℄, [14℄,[15℄, [32℄. Mention also that for the parti
ular 
ases of (0.1) e.g. for 
omplexGinzburg-Landau equations more powerful results have been obtained (see [25℄ andreferen
es therein).In the present paper 
ombining the methods of [33℄ and [34℄ we establish theexisten
e of the global attra
tor for (0.1) under the assumptions (0.2) (whi
h ismu
h more natural from the rea
tion-di�usion point of view) and (0.3)-(0.4).Theorem 1. Let the assumptions (0.2){(0.4) hold and let g 2 Lqb(
) for a someq � 2 su
h that q > n=2. Then for every u0 2 �b(
) :=W 2;qb (
)\ fu0���
 = 0g theproblem (0.1) possesses a unique solution u(t) 2 �b(
) for t � 0 whi
h satis�es thefollowing estimate: ku(t)k�b � Q(ku0k�b)e��t +Q(kgkLqb)where � > 0 is a positive 
onstant and Q is an appropriate monotoni
 fun
tionwhi
h are independent of u0, and 
onsequently the solving semigroup(0.6) St : �b(
)! �b(
); t � 0 Stu0 := u(t)is well de�ned for the problem (0.1).Moreover, this semigroup possesses a bounded in �b(
) and lo
ally 
ompa
t (=
ompa
t in a lo
al topology of �lo
(
) :=W 2;qlo
 (
)) attra
tor A.Note that under the assumptions of Theorem 1 the Hausdor� and fra
tal di-mension of the attra
tor may be in�nite (and is o

urred to be in�nite in manyinteresting parti
ular 
ases) (see e.g. [5℄, [32℄ or Th. 3 below) and 
onsequentlythere is a problem of �nding new quantitative 
hara
teristi
 of the attra
tor adoptedto the in�nite dimensional 
ase. One of possible approa
hes to handle this problemwhi
h is suggested in [8℄ is to 
onsider and estimate the Kolmogorov's "-entropy ofthe in�nite dimensional attra
tor A.Re
all, that if K is a pre
ompa
t set in a metri
 spa
e M then it 
an be 
ov-ered (due to the Hausdor� 
riteria) by a �nite number of "-balls for every " > 0.Let N"(K;M) be the minimal number of su
h balls. Then by de�nition the Kol-mogorov's "-entropy of K in M is the following number:(0.7) H " (K;M) := lnN"(K;M)It is worth to emphasize that in 
ontrast to the fra
tal dimension the quantity (0.7)remains �nite for every " > 0 and every pre
ompa
t set K in M .The "-entropy of the in�nite dimensional uniform attra
tors for (0.1) in the 
asewhere the domain 
 is bounded and the external for
e g depends expli
itly on t3



has been studied in [8℄. The 
ase of autonomous rea
tion-di�usion equations in Rnhas been 
onsidered in [10℄ and [32℄. The entropy for the autonomous and nonau-tonomous RDE in general 
ase of the unbounded domain 
 has been 
onsideredin [15℄ and [33℄. The entropy for damped hyperboli
 equations in the unboundeddomain has been investigated in [35℄ and [36℄.It is parti
ularly proved in [33℄ that in the 
ase where the di�usion matrix a iss
alar the entropy of restri
tions A��
\BRx0 possesses the estimate(0.8) H " (A��
\BRx0 ;�b) � C vol(
 \ BR+K ln 1="x0 ) ln 1" ; " � "0 < 1where the 
onstants C, K and "0 are independent of ", R, and x0.In the present paper we extend this estimate to the 
ase of general di�usionmatri
ies a satisfying (0.2).Theorem 2. Let the assumptions of Theorem 1 hold. Then the entropy of theattra
tor A of (0.1) possesses the estimate (0.8).Moreover, in the 
ase where 
 = Rn and g � 
onst we obtain the lower boundsfor the entropy of restri
tions A��BRx0 under the natural assumption that (0.1) pos-sesses at least one spatially homogeneous exponentially unstable equilibria point.Without loss of generality one may assume that u � 0 is a su
h equilibria and
onsequently (0.1) has the following view:(0.9) �tu = a�xu+Bu� �(u); �(0) = �0(0) = 0where the matrix B := �f 0(0)� �0.Theorem 3. Let the assumptions of Theorem 1 hold and let 
 = Rn and (0.1) hasthe form (0.9). Assume also that(0.10) �(a�x +B) \ fz 2 C : Re z > 0g 6= ?Then the entropy of the attra
tor possesses the following estimates:(0.11) H " (A��BRx0 ;�b) � C1Rn ln 1" ; C1 > 0; " � "0 < 1Moreover, for every � > 0 there is a 
onstant C� > 0 su
h that(0.12) H " (A��B1x0 ;�b) � C� �ln 1"�n+1��Note that for the parti
ular 
ase 
 = Rn (0.8) reads(0.13) H " (A��BRx0 ;�b) � C2�R+K ln 1"�n ln 1"Therefore, Theorem 3 shows that the estimate (0.8) is sharp at least in the 
ase
 = Rn . From the other side in the 
ase where the domain 
 is bounded theestimate (0.8) yields H " (A;�) � C vol(
) ln 1"4



whi
h re
e
ts the well-known heuristi
 prin
iple that the equations of mathemat-i
al physi
s in bounded domains have the �nite fra
tal dimension (and moreoverindi
ates in a right way the dependen
e of this dimension on the 'size' of 
). Thus,the estimate (0.8) may be 
onsidered as a natural generalization of this prin
ipleto the 
ase of unbounded domains (see also [15℄ or [36℄).The rest part of the paper is devoted to a more 
omprehensive study of thespatially homogeneous 
ase of the equation (0.1) (
 = Rn , g � 
onst). In this
ase the attra
tor A possesses an additional stru
ture, namely, it is o

urred to beinvariant under the group fTh; h 2 Rng of spatial shifts:(0.14) Th : A ! A; ThA = A; h 2 Rn ; (Thu0)(x) := u0(x+ h)This semigroup 
an be treated as a dynami
al system (with multidimensional 'time'if n > 1) a
ting in the phase spa
e A. Thus, in order to study the spatial 
omplexity(and spatial 
haotisity) of A one may investigate the dynami
al properties of thesystem (0.14).The phenomena of spatial 
omplexity and spatial 
haotisity has been studied e.g.in [2℄, [6℄, [12℄ for a various parti
ular 
ases of the equation (0.1). In parti
ular,the examples whi
h show that the topologi
al entropy of the dynami
al system(0.14) may be positive (and, moreover, that this dynami
al system may 
ontainthe symboli
 dynami
s) has been 
onstru
ted there. In the present paper we provethat under the natural assumptions the topologi
al entropy of the dynami
al system(0.14) is in�nite.Theorem 4. Let the assumptions of Theorem 3 hold. Then the spatial dynami
alsystem (0.14) has the in�nite topologi
al entropy: hsp(A) =1.Moreover, we introdu
e (in Se
tion 7) a new quantitative 
hara
teristi
 of thedynami
s { the modi�ed topologi
al entropy bhsp, whi
h o

urred to be �nite andpositive for the 
ase of (0.14): 0 < bhsp(A) <1.Thus, the dynami
al behavior of (0.14) is o

urred to be extremely 
haoti
. Notealso that in 
ontrast to the 
ase of dynami
al 
haos, generated by ODE or by PDEin bounded domains the symboli
 dynami
s (Bernulli shifts, see e.g. [21℄) is notan adequate model example for understanding the nature of the spatial 
haotisityin (0.14) be
ause the topologi
al entropy of symboli
 dynami
s is �nite. In orderto over
ome this diÆ
ulty a new model dynami
al system whi
h generalizes theBernulli shifts and adopted to the 
ase of in�nite topologi
al entropy is suggested.Namely, let D be a unitary dis
 in C and letM := DZn endowed by the Tikhonov'stopology. A dis
rete dynami
al system Th (with multidimensional 'time' h 2 Zn)on M 
an be de�ned in a natural way:(0.15) Thv(l) := v(h+ l); h; l 2 Zn; v 2 M(Re
all that as usual M is interpreted as a spa
e of fun
tions v : Zn! D ).The main result of the paper is the following theorem.Theorem 5. Let the assumptions of Theorem 3 hold. Then there is a positivenumber � > 0, the 
losed subset K � A and a homeomorphism � : M ! K su
hthat(0.16) T�hK = K and T�h�(v) = �(Thv); 8h 2 Zn; v 2M5



Moreover, this homeomorphism is o

urred to be Lips
hitz 
ontinuous under theappropriate 
hoi
e of metri
s on A and M and preserves the modi�ed topologi
alentropy: 0 < bhsp(M) = bhsp(K) � bhsp(A) <1As the �rst elementary 
orollary of this 
onstru
tion we obtain the fa
t thatevery �nite dimensional dynami
s 
an be realized (up to a homeomorphism) byrestri
ting the spatial dynami
al system (0.14) to the appropriate 
losed subsetsof A.Corollary. Let n = 1 and the assumptions of Theorem 3 hold. Assume thatM � RN is an arbitrary 
ompa
t set and  : M ! M is an arbitrary homeo-morphism of it. Then there is a number �0 > 0, a set K = K (M; ) � A and ahomeomorphism � 0 :M ! K su
h that(0.17) T�0hK = K ; 8h 2 Z and T�0 Æ � 0 = � 0 Æ  The result of this Corollary 
on�rms from the other point of view that the spatialdynami
s (0.14) is an extremely 
haoti
.Re
all now that we have also the temporal evolution operator St : A ! A, t � 0generated by the equation (0.1), therefore it seems reasonable to study the temporalevolution of spatially 
haoti
 stru
tures in A (see also [11℄, [13℄). To this end weintrodu
e a notion of the spatial 
omplexity for the individual point u0 2 A in thefollowing natural way:(0.18) bhsp(u0) := bhsp(Hsp(u0))where Hsp(u0) := [Thu0; h 2 Rn ℄A is the 
losure in A of 
omplete orbit for u0 withrespe
t to the spatial shifts. Under some additional assumptions whi
h look notvery restri
tive we prove that this value preserves under the temporal evolution.Theorem 6. Let the assumptions of Theorem 3 hold and let in addition the di�u-sion matrix a is normal (aa� = a�a). Then(0.19) bhsp(Stu0) = bhsp(u0); 8u0 2 AMoreover, there are points u0 2 A su
h that0 < bhsp(u0) <1Thus, Theorem 6 shows that the spatial 
haos preserves under the temporalevolution.We illustrate the obtained results on the example of 
omplex Ginzburg-Landauequation (see Example 8.1).The paper is organized as follows.The de�nitions of fun
tional spa
es whi
h are of fundamental signi�
an
e for ourstudy the equation (0.1) and their simple properties are given in Se
tion 1.The various a priori estimates for the solutions of (0.1) are obtained in Se
tion 2.Moreover, basing on these estimate we verify the existen
e of a solution, it's unique-ness and derive some estimates for di�eren
es of solutions whi
h will be essentiallyused later. 6



The existen
e of a global attra
tor A for the system (0.1) is veri�ed in Se
tion 3.The de�nition of Kolmogorov's "-entropy and the standard of examples whi
hillustrate the typi
al behavior of the this quantity as " ! 0 for various sets infun
tional spa
es are re
alled in Se
tion 4.The upper bounds of the "-entropy for the attra
tor A of the equation (0.1) areobtained in Se
tion 5.The further development of the method of in�nite dimensional unstable mani-folds for the equation (0.9) are given in Se
tion 6. Moreover, using this method wederive the lower bounds of the Kolmogorov's entropy of the attra
tor and preparea number of te
hni
al tools for studying the spatial 
omplexity of the attra
tor.This spatial 
omplexity is investigated in Se
tion 7 (parti
ularly Theorems 4 and5 are proved here). Note, that the results of this Se
tion are essentially based onthe results of Se
tions 5 and 6.The temporal evolution of the spatially 
haoti
 stru
tures are studied in Se
-tion 8. In parti
ular the Holder 
ontinuity of the inverse operator for St restri
tedto the attra
tor whi
h is of independent interest is proved here.A
knowledgements. The author has greatly bene�ted from helpful 
omments ofM.Efendiev, H.Gaevski, A.Mielke, and M.Vishik.x1 Fun
tional spa
esIn this Se
tion we introdu
e several 
lasses of Sobolev spa
es in unboundeddomains and re
all shortly some of their properties whi
h will be essentially usedbelow. For a detailed study of these spa
es see [14℄, [33℄.De�nition 1.1. A fun
tion � 2 Clo
(Rn ) is 
alled a weight fun
tion with the rateof growth � � 0 if the 
ondition(1.1) �(x + y) � C�e�jxj�(y); �(x) > 0is satis�ed for every x; y 2 Rn .Remark 1.1. It is not diÆ
ult to dedu
e from (1.1) that(1.2) �(x+ y) � C�1� e��jxj�(y)is also satis�ed for every x; y 2 Rn .The following example of weight fun
tions are of fundamental signi�
an
e forour purposes: �";x0(x) = e�"jx�x0j; " 2 R; x0 2 Rn(Evidently this weight has the rate of growth j"j.)De�nition 1.2. Let 
 � Rn be some (unbounded) domain in Rn and let � be aweight fun
tion with the rate of growth �. De�ne the spa
eLp�(
) = �u 2 D0(
) : ku;
; k�;0;p � Z
 �(x)ju(x)jp dx <1�Analogously the weighted Sobolev spa
e W l;p� (
), l 2 N is de�ned as the spa
e ofdistributions whose derivatives up to the order l in
lusively belong to Lp�(
).7



For the simpli
ity of notations we will write below W s;pf"g instead of W s;pe�"jxj .We de�ne also another 
lass of weighted Sobolev spa
esW l;pb;�(
) = �u 2 D0(
) : ku;
kpb;�;l;p = supx02
�(x0)ku;
 \ B1x0kpl;p <1�Here and below we denote by BRx0 the ball in Rn of radius R, 
entered in x0, andku; V kl;p means kukW l;p(V ).We will write W l;pb instead of W l;pb;1 .Proposition 1.1.1. Let u 2 Lp�(
), where � is a weight fun
tion with the rate of growth �. Thenfor any 1 � q � 1 the following estimate is valid:(1.3) �Z
 �(x0)q �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q � C Z
 �(x)ju(x)jp dxfor every " > �, where the 
onstant C depends only on ", � and C� from (1.1) (andindependent of 
).2. Let u 2 L1� (
). Then the following analogue of the estimate (1.3) is valid:(1.4) supx02
��(x0) supx2
fe�"jx�x0jju(x)jg� � C supx2
f�(x)ju(x)jgThe proof of this Proposition 
an be found in [14℄ or [33℄.For the more detailed study of fun
tional spa
es de�ned above we need someregularity assumptions on the domain 
 � Rn whi
h are assumed to be validthroughout of the paper.We suppose that there exists a positive number R0 > 0 su
h that for every pointx0 2 
 there exists a smooth domain Vx0 � 
 su
h that(1.5) BR0x0 \
 � Vx0 � BR0+1x0 \
Moreover it is assumed also that there exists a di�eomorphism �x0 : B20 ! BR0+2x0su
h that �x0(x) = x0 + px0(x), �x0(B10) = Vx0 and(1.6) kpx0kCN + kp�1x0 kCN � Kwhere the 
onstant K is assumed to be independent of x0 2 
 and N is largeenough. For simpli
ity we suppose below that (1.5) and (1.6) hold for R0 = 2.Note that in the 
ase when 
 is bounded the 
onditions (1.5) and (1.6) are equiv-alent to the 
ondition: the boundary �
 is a smooth manifold, but for unboundeddomains the only smoothness of the boundary is not suÆ
ient to obtain the regularstru
ture of 
 when jxj ! 1 sin
e some uniform with respe
t to x0 2 
 smooth-ness 
onditions are required. It is the most 
onvenient for us to formulate these
onditions in the form (1.5) and (1.6). 8



Proposition 1.2. Let the domain 
 satisfy the 
onditions (1.5) and (1.6), theweight fun
tion { the 
ondition (1.1) and let R be a positive number. Then thefollowing estimates are valid:(1.7)C2 Z
 �(x)ju(x)jp dx � Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 � C1 Z
 �(x)ju(x)jp dxProof. The proof of this Proposition is given in [14℄ or [33℄. For the reader's 
on-venien
e we re
all shortly this proof.Let us 
hange the order of integration in the middle part of (1.7)(1.8) Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 = Z
 ju(x)jp �Z
 �
\BRx (x0)�(x0) dx0� dxHere �
\BRx is the 
hara
teristi
 fun
tion of the set 
 \ BRx .It follows from the inequalities (1.1) and (1.2) that(1.9) C1�(x) � infx02BRx �(x0) � supx02BRx �(x0) � C2�(x)and the assumptions (1.5) and (1.6) imply that(1.10) 0 < C1 � vol(
 \ BRx ) � C2uniformly with respe
t to x 2 
.The estimate (1.7) is an immediate 
orollary of the estimates (1.8){(1.10). Pro-position 1.2 is proved. �Corollary 1.1. Let (1.5) and (1.6) be valid. Then the equivalent norm in weightedSobolev spa
e W l;p� (
) is given by the following expression:(1.11) ku;
k�;l;p = �Z
 �(x0)ku;
 \BRx0kpl;p dx0�1=pParti
ularly, the norms (1.11) are equivalent for di�erent R 2 R+ .To study the equation (0.1) we need also weighted Sobolev spa
es with fra
tionalderivatives s 2 R+ (not only s 2 Z). For the �rst we re
all (see [30℄ for details) thatif V is a bounded domain the norm in the spa
e W s;p(V ), s = [s℄ + l, 0 < l < 1,[s℄ 2 Z+ 
an be given by the following expression(1.12) ku; V kps;p = ku; V kp[s℄;p + Xj�j=[s℄ Zx2V Zy2V jD�u(x)�D�u(y)jpjx� yjn+lp dx dyIt is not diÆ
ult to prove arguing as in Proposition 1.2 and using this representationthat for any bounded domain V with a suÆ
iently smooth boundary(1.13) ku; V kps;p � C1 Zx02V ku; V \ BRx0kps;p dx0 � C2ku; V kps;pThis justi�es the following de�nition. 9



De�nition 1.3. De�ne the spa
e W s;p� (
) for any s 2 R+ by the norm (1.11).It is not diÆ
ult to 
he
k that these norms are also equivalent for di�erent R > 0.Note now that the weight fun
tions(1.14) �";x0(x) = e�"jx�x0jsatisfy the 
onditions (1.1) uniformly with respe
t to x0 2 Rn , 
onsequently allestimates obtained above for the arbitrary weights will be valid for the family (1.14)with 
onstants, independent of x0 2 Rn . Sin
e these estimates are of fundamentalsigni�
an
e for us we write it expli
itly in a number of 
orollaries formulated below.Corollary 1.2. Let u 2 LpfÆg(
) for 0 < Æ < ". Then the following estimate holdsuniformly with respe
t to y 2 Rn(1.15) �Z
 e�qÆjx0�yj�Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q �� C";q Z
 e�Æjx�yjju(x)jp dxMoreover if u 2 L1fÆg(
), Æ < " then(1.16) supx02
�e�Æjx0�yj supx2
fe�"jx�x0jju(x)jg� � C";Æ supx2
fe�Æjx�yjju(x)jgCorollary 1.3. Let u 2 W l;pb;�(
) and � be a weight fun
tion with the rate of growth� < ". Then(1.17) C1ku;
kpb;�;l;p �� supx02
��(x0) Zx2
 e�"jx�x0jku;
 \ B1xkpl;p dx� � C2ku;
kpb;�;l;pFor the proof of this 
orollary see [33℄.We will need also the following sub
lass of weight fun
tions with the exponentialrate of growth.De�nition 1.4. A fun
tion � 2 Clo
(Rn ) is de�ned to be a weight fun
tion withthe polynomial rate of growth � if the following inequality is valid for every x; y 2 Rn(1.18) �(x+ y) � C� �(1 + jy1j2)(1 + jy2j2) � � � ; (1 + jynj2)��=2 �(x); �(x) > 0The following analogue of Corollary 1.3 is valid for su
h weights.Corollary 1.4. Let � be a weight fun
tion with a polynomial rate of growth � < N .Then the following estimate is valid:(1.19) C1 supx02
�(x0)u(x0) �� supx2
��(x) supy2
 �(1 + jx1 � y1j2) � � � (1 + jxn � ynj2)��N=2 u(y)� �� C2 supx02
�(x0)u(x0)The proof of this Proposition is 
ompletely analogous to the proof of Corollary 1.3(see e.g. [33℄). 10



x2 The a priori estimates, existen
e of solutions, uniqueness.In this Se
tion we derive a number of a priori estimates for the solutions of therea
tion-di�usion system(2.1) �tu = a�xu� �0u� f(u) + g; x 2 
; u���
 = 0; u��t=0 = u0in the unbounded domain 
 � Rn satisfying the assumptions of the previous Se
-tion. Moreover, basing on these estimates we derive the existen
e of a solution u(t)for (2.1) it's uniqueness and obtain some estimates for di�eren
es of solutions of(2.1) whi
h will be used below for studying the attra
tor of this system.Re
all, that u(t) = (u1(t; x); � � � ; uk(t; x)) is assumed to be a ve
tor-valued fun
-tion, a is a 
onstant k � k matrix satisfying the 
ondition a+ a� > 0, �0 > 0, thenonlinear term f(u) satis�es the assumptions(2.2) 8><>: 1: f 2 C2(Rk ;Rk )2: f(u):u � �C3: f 0(u) � �KMoreover, we impose the additional growth restri
tion for the nonlinearity f(u):(2.3) jf(u)j � C(1 + jujp);Where the exponent p is arbitrary for n � 4 and q < 1 + 4n�4 for n � 5.The external for
e g is assumed to belong to the spa
e Lqb(
) for a 
ertain q � 2and q > n2 (note, that if n � 3 then the exponent q = 2 is admitted) and the initialdata u0 is supposed to be from the phase spa
e �b(
) :=W 2;qb (
) \ fu0���
 = 0g.The solution of (2.1) is de�ned to be a fun
tion(2.4) u 2 L1(R+ ;W 2;qb (
)) \ C([0;1); Lqb(
))whi
h satis�es the equation (2.1) in the sense of distributions.Remark 2.1. It follows from the Sobolev's embedding theorem and from our
hoi
e of the exponent q (q > n=2) that the solution u 2 L1(R+ � 
), 
onse-quently, the nonlinear term in (2.1) is well-de�ned and belongs to L1. Thereforeit follows from (2.4) and from the equation (2.1) that(2.5) �tu 2 L1(R+ ; Lqb(
))Moreover, it 
an be shown using the standard arguments (see e.g. [33℄) that(2.6) u 2 C([0; T ℄;W 2;qe�"jxj(
)) \ C1([0; T ℄; Lqe�"jxj(
))for every T > 0 and every " > 0. Note however, that in 
ontrast to the 
aseof bounded domains for generi
 u0 2 � the 
orresponding solution u(t) is not
ontinuous at t = 0 as a fun
tion with values in �b(
) (see e.g. [28℄ for the
onditions on u0 whi
h guarantee this 
ontinuity).The main result of this Se
tion is the following theorem.11



Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).Then the following estimate is valid(2.7) ku(t)k�b(
) � Q �ku(0)k�b(
)� e��t +Q�kgkLqb(
)�where � > 0 is a 
ertain positive 
onstant depending only on the equation and Q isan appropriate monotoni
 fun
tion whi
h also depends only on the equation (andindependent of u and u0).Proof. We divide the proof of this theorem in a number of lemmata.Lemma 2.1. Let the above assumptions hold. Then the following estimate holdsfor every x0 2 
:(2.8) ku(T );
 \B1x0k20;2 + Z T+1T ku(t);
 \ B1x0k21;2 dt �� Ce��T �e�"jx�x0j; ju(0)j2�+ C �jgj2; e�"jx�x0j�where the positive 
onstants C;�; " are independent of x0 and (u; v) means the innerprodu
t in L2(
).The proof of this estimate is standard and is based on multiplying the equation(2.1) by u(t)e�"jx�x0j (with " > 0 small enough) integrating by parts and using thedissipativity assumption f(u):u � �C, the positiveness of a and the evident fa
tthat(2.9) krx �e�"jx�x0j� k � "e�"jx�x0j(see e.g. [14℄ or [33℄ for details).Lemma 2.2. Let the above assumptions hold. Then the following estimate is valid:(2.10) ku(T );
 \ B1x0k21;2 + Z T+1T ku(t);
 \ B1x0k22;2 dt �� Ce��T �e�"jx�x0j; ju(0)j2 + jrxu(0)j2�+ C �jgj2; e�"jx�x0j�where the positive 
onstants C;�; " are independent of x0.Proof. Let us multiply the equation (2.1) by the expression(2.11) nXi=1 �xi (�";x0(x)�xiu(t)) := �";x0�xu(t) +rx�";x0 :rxu(t)where �";x0(x) := e�"jx�x0j and " > 0 is small enough. Then we obtain after thestandard integration by parts and using the monotoni
ity assumption f 0(u) � �Kand the inequality (2.9) that(2.12) 1=2�t ��";x0 ; jrxu(t)j2�+ �0 ��";x0 ; jrxu(t)j2�+ � ��";x0 ; j�xu(t)j2� �� K ��";x0 ; jrxu(t)j2�+ Cjaj" (�";x0 j�xu(t)j; jrxu(t)j) ++ (�";x0 ; jgjj�xu(t)j+ "jgjjrxu(t)j)12



Estimating the last two terms in the right-hand side of (2.12) by Holder inequalitywe derive that(2.13) �t ��";x0 ; jrxu(t)j2�+ �0 ��";x0 ; jrxu(t)j2�+ � ��";x0 ; j�xu(t)j2� �� 2K ��";x0 ; jrxu(t)j2�+ C ��";x0 ; jgj2�Applying now the Gronwall inequality to (2.13) and using the inequality (2.8) inorder to estimate the t-integral over the right-hand side of (2.13) we derive that(2.14) ��";x0 ; jrxu(T )j2� � Ce��T ��";x0 ; jrxu(0)j2 + ju(0)j2�+ C ��";x0 ; jgj2�The estimates (2.13) and (2.14) imply that(2.15) Z T+1T ��";x0 ; j�xu(t)j2� dt �� C1e��T ��";x0 ; jrxu(0)j2 + ju(0)j2�+ C1 ��";x0 ; jgj2�Note also, that a

ording to our regularity assumptions on the boundary �
 wehave ellipti
 regularity for the Lapla
ian in 
 (see e.g. [14℄):(2.16) kvkW 2;2�";x0 (
) � C �k�xvkL2�";x0 (
) + kvkL2�";x0 (
)�The estimates (2.14){(2.16) imply the assertion of the lemma. Lemma 2.1 is proved.Our next task is to obtain the estimate for the W 2;2b -norm, analogous to (2.7).To this end we introdu
e the following norm, depending on " > 0 and x0 2 
:(2.17) kvk2D";x0 := kvk2W 2;2�";x0 (
) + kf(v)k2L2�";x0 (
)Lemma 2.3. Let the above assumptions hold and let " > 0 be small enough. Thenthe following estimate is valid for the solutions of the equation (2.1):(2.18) ku(t)k2D";x0 � Ce2Kt�ku(0)k2D";x0 + 1 + kgk2L2�";x0 (
)�where the 
onstant K is the same as in (2.2) and the 
onstant C is independent ofx0 and ".Proof. We give below only the formal dedu
ing of the estimate (2.18) whi
h 
an beeasily justi�ed using e.g. the standard di�eren
e approximations for the derivative�tu and the regularity (2.6).Let us di�erentiate the equation (2.1) with respe
t to t and denote �(t) := �tu(t).Then this fun
tion satis�es the equation(2.19) �t� = a�x� � �0� � f 0(u)�; �(0) = a�xu0 � f(u0) + g; ����
 = 0Let us multiply this equation by �(t)�";x0 and integrate over x 2 
. Then integrat-ing by parts and using the monotoni
ity assumption f 0(u) � �K and the inequality(2.9) (where " is small enough) we derive the following estimate:(2.20) �t ��";x0 ; j�(t)j2� � 2K ��";x0 ; j�(t)j2�13



Applying the Gronwall inequality to this relation we obtain that(2.21) k�tu(t)k2L2�";x0 (
) � Ce2Kt�ku0k2D";x0 + 1 + kgk2L2�";x0 (
)�Having the estimate (2.21) for the L2-norm of the t-derivative one 
an 
onsider theparaboli
 equation (2.1) as an ellipti
 boundary value problem at a �xed point T :(2.22) a�xu(T )� f(u(T )) = hu := �tu(T )� g; u(T )���
 = 0with the right-hand side hu belonging to the spa
e L2�";x0 (
). Arguing as in theproof of Lemmata 2.1 and 2.2 (multiplying the equation by u�";x0 and by theexpression (2.11) and so on) one 
an easily derive the estimate(2.23) ku(T )k2W 2;2�";x0 (
) � C �1 + khuk2L2�";x0 (
)�The estimates (2.21) and (2.23) immediately imply that(2.24) ku(T )k2W 2;2�";x0 (
) � C1e2Kt�ku0k2D";x0 + 1 + kgk2L2�";x0 (
)�Thus, the W 2;2-part of the estimated (2.18) is proved. The rest part of it (theestimate of L2�";x0 -norm of f(u)) is an immediate 
orollary of the inequalities (2.21),(2.24) and of the equation (2.1). Lemma 2.3 is provedApplying the supx02
 to the both sides of the inequality (2.18) and using theresult of Corollary 1.3 we derive that(2.25) ku(t)k2W 2;2b (
) � Ce2Kt �ku0k2W 2;2b (
) + kf(u0)k2L2b(
) + 1 + kgk2L2b(
)�Note, that a

ording to our growth restri
tions to f and to the Sobolev embeddingtheorem(2.26) kf(u0)kL2b(
) � Q(ku0kW 2;2b (
))for the appropriate monotoni
 fun
tion Q (Q(z) := C(1 + jzjp)).The inequalities (2.25) and (2.26) imply the following estimate:(2.27) ku(t)kW 2;2b (
) � CeKt �Q(ku0kW 2;2b (
)) + kgkL2b(
)�Note however that the obtained estimate of the W 2;2b -norm diverges exponentiallywith respe
t to t ! 1 whi
h is not good from the attra
tor's point of view. Inorder to remove this divergen
e we need the following smoothing property.Lemma 2.4. Let the above assumptions hold. Then the following estimate is validfor any solution of the problem (2.1):(2.28) ku(1)kW 2;2b (
) � Q(ku(0)kW 1;2b (
)) + CkgkL2b(
)14



for a 
ertain monotoni
 fun
tion Q.Proof. Let us �x an arbitrary x0 2 
 and a suÆ
iently small " > 0. It follows fromthe estimate (2.10) and the result of Theorem 1.1 that(2.29) Z 10 ku(t)k2W 2;2�";x0 (
) dt � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�It follows from (2.29) that there exists a point T = T (x0) 2 [0; 1℄ su
h that(2.30) ku(T )k2W 2;2�";x0 (
) � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�A

ording to our growth restri
tions to the nonlinearity f(u), Sobolev embeddingtheorem and the result of Propositions 1.1 and 1.2 we derive that(2.31) kf(u(T ))k2L2�p";x0 (
) � C �1 + Zx2
 e�p"jx�x0jju(T; x)j2p dx� �� C1�1 + Zx2
 e�p"jx�x0jku(T ); Vxk2p0;2p dx� �� C2 �1 + Zx2
 e�p"jx�x0jku(T ); Vxk2p2;2 dx� �� C3�1 + Zx2
 e�p"jx�x0j�Zy2
 e�Æjy�xjku(T ); Vyk22;2 dy�p dx� �� C4�1 + Zx2
 e�"jx�x0jku(T ); Vxk22;2 dx�p � C5 �1 + ku(T )k2W 2;2�";x0 (
)�pwhere Æ > " and Vx is the same as in the 
onditions (1.5) and (1.6). Here we haveused also the evident formula (see e.g. [14℄)(2.32) kv; Vxkl;p � CÆ Zy2
 e�Æjx�yjkv; Vykl;p dywhi
h holds for every Æ > 0.The estimates (2.30) and (2.31) imply that(2.33) ku(T )k2Dp";x0 � C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
)�pApplying now the estimate (2.18) with " repla
ed by p" at the initial time momentt = T instead of t = 0 we derive from (2.33) that(2.34) ku(1)k2W 2;2�p";x0 (
) � C1 �1 + kgk2L2�";x0 (
) + ku(0)k2W 1;2�";x0 (
)�pNote that all 
onstants Ci in the previous estimates were in a fa
t independent ofthe 
hoi
e of x0 2 
, 
onsequently applying the supx02
 to the both sides of (2.34)and using the result of Corollary 1.3 we derive the estimate (2.28). Lemma 2.4 isproved.Thus, we have proved the analogue of the estimate (2.7) for q = 2.15



Lemma 2.5. Let the above assumptions hold. Then(2.35) ku(t)kW 2;2b (
) � Q(ku0kW 2;2b (
))e��t +Q(kgkL2b(
))for a some positive � > 0 and a 
ertain monotoni
 fun
tion Q.Indeed, the assertion of the lemma is a simple 
orollary of estimates (2.10), (2.27)and (2.28)Our task now is starting from the W 2;2b -estimate (2.35) and using the para-boli
 regularity theorems to improve steps by steps this estimate to the W 2;qb -es-timate (2.7). For the �rst we derive the W 2��;qb -estimate for a suÆ
iently smallpositive �.Lemma 2.6. Let the above assumptions hold. Then for every � > 0 the followingestimate is valid:(2.36) ku(t)kW 2��;qb (
) � Q�(ku(0)k�b(
))e��t +Q�(kgkLqb(
))where � > 0 is a 
ertain positive 
onstant and Q� is a monotoni
 fun
tion (de-pending on �).Proof. Re
all that we assume that the domain 
 satis�es the 
onditions (1.5) and(1.6) with R0 = 2. Let us 
onsider the 
ut-o� fun
tion  (x) 2 C10 (Rn ) su
h that (x) = 1 if x 2 B10 and  (x) = 0 if x =2 B20 . Denote  x0(x) :=  (x � x0) andvx0(t) :=  x0u(t). It follows from the equation (2.1) and from the 
ondition (1.5)that vx0(t) is a solution of the following problem:(2.37) �tvx0 � a�xvx0 + �0vx0 = hx0(t) :=  x0g � 2rx x0 :arxu���x x0 :avx0 �  x0f(u); vx0 ��Vx0 = 0; vx0��t=0 =  x0u(0)The following standard regularity result is of fundamental signi�
an
e for our proofof the lemma.Proposition 2.1. Let the domains Vx0 satis�es the assumptions (1.5) and (1.6).Then for every 1 � � > 0, 1 < r <1, and t 2 [0; 1℄ the following estimate is validfor the solution vx0 of the problem (2.37):(2.38) kvx0(t); Vx0k2��;r � C  kvx0(0); Vx0k2��;r + sups2[0;t℄ khx0 ; Vx0k0;r!where the 
onstant C = C(r; �) is independent of x0.Moreover the following version of smoothing property is valid for every t 2 R+ :(2.39) kvx0(t+ 1); Vx0k2��;r � C1 kvx0(t); Vx0k1;2 + sups2[t;t+1℄ khx0 ; Vx0k0;r!where the 
onstant C1 is also independent of x0.Indeed, the estimates (2.38) and (2.39) 
an be easily proved using the analyti
semigroups theory (see e.g. [9℄, [30℄). Moreover the assumptions (1.5) and (1.6)imply that the 
onstants C and C1 are independent of x0.16



Assume now that we have already proved the estimate (2.36) with q repla
ed byl, 2 � l < r and obtain this estimate for a larger exponent r: q � r = r(l) > l.Indeed, let t � 1, then applying the supx02
 to the both sides of (2.38) we derivethat(2.40) ku(t)kW 2��;rb (
) � C �ku0k�b(
) + kgkLqb(
)�++ C sups2[0;1℄�ku(s)kW 1;rb (
) + kf(u(s))kLrb(
)�Let us estimate the right-hand side of (2.40) using the W 2��;lb -norms of u(s) whi
hare assumed to be known.Indeed, the third term into the right-hand side of (2.40) 
an be estimated ina su
h way if r � r1(l) := nln�l(1��) , where r1 = r1(l) is the Sobolev's maximalexponent of the embedding W 2��;l �W 1;r1 (as usual r1 =1 if n < l(1��). Notethat r1(l)=l > r1(2)=2 = n=(n� 2(1� �)) > Æ1 > 1.Analogously, using the growth restri
tion (2.3) and Sobolev's embedding theoremW 2��;l � Lp� with p�(l) := nln�l(2��) we dedu
e the estimate(2.41) kf(u(s))kLrb(
) � C �1 + ku(s)kW 2��;l(
)�pif r � r2(l) := p�(l)p . Note that a

ording to our growth restri
tions p < nn�4 (inthe 
ase n � 4 we have the embedding W 2;2 � Lr for every r and 
onsequentlyLemma 2.5 implies the estimate of Lr-norm of f(u) for every r <1), 
onsequently(2.42) r2(l)l > r2(2)2 = np(n� 4) � n� 4n� 4 + 2� > Æ2 > 1if � > 0 is small enough. Let r(l) := minfq; r1(l); r2(l)g. Then(2.43) r(l) � minfq; Ælg; Æ := minfÆ1; Æ2g > 1if � is small enough, and (2.40) and (2.41) imply that(2.44) ku(t)kW 2��;r(l)b (
) � C(1 + kgkLqb(
)) + C sups2[0;1℄ ku(s)kpW 2��;lb (
)for t � 1.Let now t � 1. Then using the estimate (2.39) instead of (2.38) and arguing asin the proof of (2.44) we derive the estimate(2.45) ku(t)kW 2��;r(l)b (
) � C �1 + kgkLqb(
)�+ sups2[t�1;t℄ ku(s)kpW 2��;lb (
)Thus, if the analogue estimate (2.36) would be proved for some q = l, then theestimates (2.44) and (2.45) would imply this estimate for q = r(l) > l (if � > 0 issmall enough). Re
all also that the estimate (2.36) for q = 2 is proved in Lemma2.5. Therefore, starting with l0 = 2 and iterate the estimates (2.44) and (2.45) withlk+1 := r(lk) we obtain �nally the estimate (2.36) with l = q (the �niteness of thenumber of iterations is guaranteed by the estimate (2.43)). Lemma 2.6 is proved.17



Note that a

ording to our assumptions on the exponent q (q > n=2) the em-bedding W 2��;qb � Cb holds if � > 0 is small enough. Therefore the estimate (2.36)implies the following estimate for the C-norm of solutions of (2.1):(2.46) ku(t)kCb(
) � Q(ku0k�b(
))e��t +Q(kgkLqb(
))with the positive 
onstant � > 0 and a 
ertain monotoni
 fun
tion Q.Now we are in a position to prove that (2.36) is valid with � = 0 as well and to
omplete the proof of the theorem. To this end we introdu
e a fun
tion ~vx0 = ~vx0(x)as a solution of the equation(2.47) a�x~vx0 � �0~vx0 +  x0g = 0; ~vx0 ���Vx0 = 0(where  x0 and Vx0 are the same as in the proof of Lemma 2.6). Then, due to theLq-regularity theorem for the Lapla
ian (see e.g. [30℄),(2.48) k~vx0 ; Vx0k2;q � Ckg; Vx0k0;qMoreover, due to the assumptions (1.5) and (1.6) the 
onstant C is independent ofx0 2 
.Let wx0(t) := vx0(t) � ~vx0 where vx0 is the same as in the proof of the previouslemma. Then this fun
tion evidently satis�es the equation:(2.49) �twx0 � a�xwx0 + �0wx0 = ~hx0(t) := �2rx x0 :arxu(t)���x x0 :au(t)�  x0f(u(t)); wx0 ���Vx0 = 0; wx0��t=0 =  x0u0 � ~vx0The proof of the estimate (2.7) is based on (2.36) and on the following standardregularity result for the auxiliary problem (2.49).Proposition 2.2. Let the above assumptions hold and let � > 0 is a positivenumber. Then the solutions of the equation (2.49) satisfy the estimate(2.50) kwx0(t); Vx0k2;q � C  kwx0(0); Vx0k2;q + sups2[0;1℄ k~hx0 ; Vx0k�;q!is valid for t � 1, where the 
onstant C is independent of x0.Moreover, the following version of the smoothing property is valid for every t � 0and � > 0:(2.51) kwx0(t+1); Vx0k2+���;q � C  kwx0(t); Vx0k1;2 + sups2[t;t+1℄ k~hx0(s); Vx0k�;q!where the 
onstant C = C(�; �) is also independent of x0.Indeed, the estimates (2.50) and (2.51) 
an be obtained using e.g. the analyti
semigroups theory (see [9℄, [30℄). The fa
t that the 
onstant C is independent ofx0 is guaranteed by the regularity assumptions (1.5) and (1.6) on the domains Vx0 .Note that due to the fa
t that f 2 C1 and due to the embedding W 2��;q � Cfor � > 0 is small enough we have the estimate(2.52) kf(u(s))kW 1;qb (
) � Q(ku(s)kW 2��;qb (
))18



for a 
ertain monotoni
 fun
tion Q (depending only on f). Consequently, arguingas in the proof of Lemma 2.6 and using the estimates (2.50){(2.52) we derive that(2.53) ku(t)kW 2;qb (
) � C �ku0k�b(
) + kgkLqb(
)�+ sups2[0;1℄Q1(ku(s)kW 2��;qb (
))is valid for t � 1 and for the appropriate fun
tion Q1 and the following smoothingproperty(2.54) ku(t+ 1)kW 2;qb (
) � sups2[t;t+1℄Q1(ku(s)kW 2��;qb (
)) + CkgkLqb(
)is also valid for every t � 0. Inserting the estimate (2.36) into the right-handside of (2.53) and (2.54) we derive after simple transformations (see e.g. [33℄) theinequality (2.7). Theorem 2.1 is proved.Remark 2.1. Arguing as in the proof of Theorem 2.1 one 
an dedu
e the followingsmoothing property for the solutions of (2.1)(2.55) ku(1)k�b(
) � Q(ku(0)kL2b(
))Indeed, the smoothing property from W 1;2b (
) to W 2;qb (
) is in a fa
t proved inLemmata 2.3{2.6. The smoothing property from L2b to W 1;2b 
an be proved in astandard way (see the proof of Lemma 2.2, only instead of multiplying the equationby the expression (2.11) one should multiply it by t(2.11)).As usual having the a priori estimate (2.7) one 
an easily verify the existen
e ofa solution for the problem (2.1).Theorem 2.2. Let the above assumptions hold. Then for every u0 2 �b(
) theequation (2.1) possesses a unique solution u(t). Moreover, the following estimateholds for every two solutions u1(t) and u2(t) of the equation (2.1):(2.56) ku1(t)� u2(t)kL2b(
) � CeKtku1(0)� u2(0)kL2b(
)where the 
onstant K is the same as in (2.2) and 
onstant C depends only on theequation.Proof. The existen
e of a solution of (2.1) for the 
ase where the domain 
 isbounded 
an be dedu
ed from the a priori estimate (2.7) using the Leray-S
hauder�xed point prin
iple (see e.g [23℄). The existen
e of a solution in the unboundeddomain 
 
an be proved after that approximating the unbounded domain 
 by thebounded ones 
N and passing to the limit N !1 (see e.g. [14℄ or [33℄ for details).Let us prove the estimate (2.56) whi
h immediately implies the uniqueness. Letu1(t) and u2(t) be two solutions of (2.1) and let v(t) = u1(t) � u2(t). Then thisfun
tion satis�es the equation(2.57) �tv = a�xv � �0v � l(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0)where l(t) := R 10 f 0(su1(t)+(1�s)u2(t)) ds, l(t) 2 L(Rk ;Rk ). Note that a

ording toour assumptions on f , we have l(t) � �K, 
onsequently, multiplying the equation(2.57) by v(t)�";x0 , integrating over the x 2 
 and arguing as in the proof ofLemmata 2.1 and 2.2 we derive that(2.58) kv(t)k2L2�";x0 (
) + Z t+1t kv(s)k2W 1;2�";x0 (
) dt � Ce2Ktkv(0)k2L2�";x0 (
)Applying the operator supx02
 to the both sides of the obtained inequality andusing the result of Corollary 1.3 we obtain the inequality (2.56). Theorem 2.2 isproved. 19



Corollary 2.1. Let the above assumptions hold. Then the problem (2.1) de�nes asemigroup St in the phase spa
e �b(
):(2.59) St : �b(
)! �b(
); u(t) = Stu0where u(t) is a solution of (2.1) with u(0) = u0.Remark 2.2. The estimate (2.56) admits to extend by 
ontinuity the semigroupSt from �b(
) to L2b(
). Moreover, due to the smoothing property (2.55) thesemigroup bSt thus obtained will a
t from L2b(
) to �b(
) if t > 0. Thus, it ispossible to de�ne a solution of the problem (2.1) for every initial data from L2b(
).We 
on
lude this Se
tion by formulating some results on the smoothing propertyfor di�eren
e of solutions of (2.1) whi
h are of fundamental signi�
an
e for our studythe attra
tor of (2.59).Theorem 2.3. Let the above assumptions hold. Then for every two solutionsu1(t); u2(t) 2 �b and for every " > 0 the following estimate is valid:(2.60) ku1(1)� u2(1);
 \ B1x0k21;2 � Cku1(0)� u2(0)k2L2�";x0 (
)where the 
onstant C = C(ku1k�b ; ku2k�b ; ") is independent of x0 2 
. Analo-gously,(2.61) ku1(1)� u2(1);
 \ B1x0kq2;q � C1ku1(0)� u2(0)kqL2�";x0 (
)where C1 is also independent of x0 2 
.Remark 2.3. Evidently the �rst estimate is an immediate 
orollary of the se
ondone but nevertheless it is more 
onvenient for us to formulate them separately takingin mind the further appli
ations of them for study the entropy of the attra
tor.Proof. The proof of these estimates is based on a standard analysis of the linearequation (2.57) and 
an be obtained in the spirit of the proof of Theorem 2.1 butessentially simpler be
ause the equation (2.57) is linear and the 
oeÆ
ient l(t) issmmoth enough:(2.62) kl(t)kW 1;qb \Cb(
) � Q(ku1(0)k�b ; ku2(0)k�b)(due to (2.7) and due to the fa
ts that f 2 C2 and W 2;qb � C (see e.g. [14℄ or[33℄ for details). Indeed, in order to prove the �rst estimate of the theorem it issuÆ
ient to multiply the equation (2.57) by tPni=1 �xi (�";x0�xiv(t)), integrate overx 2 
 and apply the Gronwall inequality using the estimates (2.61) and (2.58) (seethe proof of Lemma 2.2). The se
ond one 
an be dedu
ed from the �rst one usinge.g. the iteration method of improving the smoothness introdu
ed in the proof ofLemma 2.6. Theorem 2.3 is proved.x3 The attra
tor.In this Se
tion we prove the existen
e of the lo
ally 
ompa
t attra
tor A for thesemigroup St, generated by the equation (2.1).20



Note that although a

ording to Theorem 2.1 the semigroup St : �b(
)! �b(
),generated by the equation (2.1) possesses a bounded absorbing set B in the phasespa
e �b(
), i.e. for any other bounded subset of B � �b(
) there exists T = T (B)su
h that StB � B if t � T(the existen
e of B is an immediate 
orollary of the estimate (2.7)) but neverthelessin 
ontrast of the 
ase of bounded domains in unbounded domains the 
ompa
tattra
tor in �b(
) may not exist, e.g. the Chafee-Infante equation in Rn (k = 1,f(u) = u3 � �u, � > �0) does not possess a 
ompa
t attra
tor in the topology of�b(
) (see e.g. [33℄)That is why (following to [17℄, [18℄, [26℄, [27℄) we will 
onstru
t below the at-tra
tor A of the semigroup (2.59) whi
h attra
ts bounded subsets of �b(
) only ina lo
al topology of the spa
e �lo
 = W 2;qlo
 (
) (i.e., A is the (�b;�lo
)-attra
tor of(2.59) in notations of [4℄).Re
all that the spa
e �lo
(
) is re
exive metrizable F-spa
e whi
h is generatedby seminorms k � ;
 \B1x0k2;q, x0 2 
.De�nition 3.1. A set A � �b(
) is de�ned to be the attra
tor of the semigroupSt if the following assumptions hold:1. The set A is 
ompa
t in �lo
(
).2. The set A is stri
tly invariant with respe
t to St, i.e.StA = A for t � 03. The set A is an attra
ting set for St in lo
al topology, i.e. for every neigh-borhood O(A) of A in the topology of the spa
e �lo
(
) and for every bounded inuniform topology subset B � �b(
) there exists T = T (O; B) su
h thatStB � O(A) if t � TRe
all that the �rst 
ondition means that the restri
tion A��
1 is 
ompa
t in thespa
e W 2;q(
1) for every bounded 
1 � 
.Analogously, the third 
ondition means that for every bounded 
1 � 
, everybounded B in �b(
) and every W 2;q(
1)-neighborhood O(A��
1) of the restri
tionA��
1 there exists T = T (
1;O; B) su
h that(StB)��
1 � O(A��
1) if t � TTheorem 3.1. Let the above assumptions be valid. Then the semigroup St, de�nedby (2.59), possesses an attra
tor A in the sense of De�nition 3.1 whi
h has thefollowing stru
ture:(3.2) A = K��t=0where we denote by K the set of all solutions u of (2.1), de�ned and bounded for allt 2 R (supt2R ku(t)k�b(
) <1).Proof. A

ording to the attra
tor's existen
e theorem for abstra
t semigroups (see[4℄), it is suÆ
ient to verify the following 
onditions:1. The semigroup St possesses a 
ompa
t absorbing set K in �lo
-topology.2. The operators St have 
losed graphs on K in the �lo
-topology for every �xedt � 0.Let us verify the �rst 
ondition. To this end we need the following Lemmata21



Lemma 3.1. Let the domain 
 satisfy the assumptions (1.5) and (1.6). Then forevery g 2 Lqb(
) the problem(3.3) a�xv � �0v + g = 0; v���
 = 0possesses a unique solution v = v(g) 2 W 2;qb (
) and the 
orresponding estimate(3.4) kvkW 2;qb (
) � CkgkLqb(
)is validIndeed, the maximal regularity (3.4) follows e.g. from the estimate (2.7). Theexisten
e of a solution and it's uniqueness 
an be veri�ed as in Theorem 2.2.Lemma 3.2. Let u(t) be a solution of the equation (2.1), v = v(g) be the solutionof (3.4) 
onstru
ted in Lemma 3.1, and w(t) = u(t) � v. Then there is a positive� > 0 depending only on the equation su
h that(3.5) kw(1)kW 2+�;qb (
) � Q(ku(0)k�b(
)) +Q(kgkLqb(
))for a 
ertain monotoni
 fun
tion Q.Indeed, basing on the smoothing property (2.51) and arguing as in the end ofthe proof of Theorem 2.1 one 
an derive the estimate(3.6) kw(1)kW 2+�;qb (
) � sups2[0;1℄Q1(ku(s)k�b(
))for a 
ertain monotoni
 fun
tion Q1 and positive �. Inserting now the estimate(2.7) into the right-hand side of (3.6) we obtain (3.5).The estimates (2.7) and (3.5) imply that the set(3.7) K := v(g) +BR(W 2+�;qb ); BR(W 2+�;qb ) :== fw 2W 2+�;qb (
) : kwkW 2+�;qb � Rgwill be an absorbing set for the semigroup (2.59), generated by the equation (2.1)if R is large enough. It remains to note that the absorbing set K thus obtained isevidently 
ompa
t in �lo
(
). Thus, the �rst assumption of the abstra
t theoremon the attra
tor's existen
e is veri�ed.Let us verify the se
ond one. To this end we need one more lemma.Lemma 3.3. Let B be a bounded set in �b(
) and � be a positive weight fun
-tion from the 
lass introdu
ed in Se
tion 1 su
h that RRn �(x) dx < 1. Then thetopologies indu
ed on B by the embeddings B � �lo
(
) and B � ��(
) :=W 2;q� (
)
oin
ide.The assertion of the lemma is more or less evident and we leave the rigorousproof of it to a pedant reader.Let us �x �(x) = e�"jxj where " > 0 is small enough. Then due to Lemma 3.3in order to prove that St has a 
losed in �lo
-topology graph on K it is suÆ
ientto prove that the 
onvergen
es(3.8) u0 = ��� limn!1un0 ; v = ��� limn!1Stun022



with un0 ; u0 2 K imply that v = Stu0. But a

ording to the estimate (2.58) thesemigroup St is globally Lips
hitz 
ontinuous in the L2�-topology, 
onsequently(3.9) Stu0 = L2�� limn!1Stun0The 
onvergen
es (3.8) and (3.9) imply that v = Stu0. Thus, all assumptionsof the abstra
t theorem on the attra
tor's existen
e are veri�ed and 
onsequentlythe semigroup St possesses an (�b;�lo
)-attra
tor whi
h has the stru
ture (3.2).Theorem 3.1 is proved.Remark 3.1. It is not diÆ
ult to prove arguing in the spirit of Se
tion 1 that thesemigroup St not only has a 
losed graph in �lo
 but Lips
hitz 
ontinuous and evendi�erentiable on every �b-bounded subset (see also [14℄).x4 Kolmogorov's "-entropy: definitions and typi
al examples.In this Se
tion we re
all brie
y the de�nition of "-entropy and give the upperand lower estimates of it when "! 0 for the typi
al sets in fun
tional spa
es. Forthe detailed study of this 
on
ept see [22℄, [30℄.De�nition 4.1. Let M be a metri
 spa
e and let K be pre
ompa
t subset of it.For a given " > 0 let N"(K) = N"(K;M ) be the minimal number of "-balls in Mwhi
h 
over the set K (this number is evidently �nite by Hausdor� 
riteria). Byde�nition, Kolmogorov's "-entropy of K in M is the following number:(4.1) H " (K) = H " (K;M ) � lnN"(K)Example 4.1. Let K be 
ompa
t n-dimensional Lips
hitz manifold in M . Thenthe evident estimates imply that(4.2) C1�1"�n � N"(K) � C2�1"�nand 
onsequently(4.3) H " (K) = (n+ o(1)) ln 1"when "! 0.This example justi�es the following de�nition.De�nition 4.2. The fra
tal (box-
ounting) dimension of the set K �� M is de-�ned to be the following number:(4.4) dimF (K) = dimF (K;M ) = lim sup"!0 H " (K)ln 1"Note that the fra
tal dimension dimF (K) 2 [0;1℄ is de�ned for any 
ompa
t setin M but may be not integer if K is not a manifold.23



Example 4.2. Let M = [0; 1℄ and let K be the ternary Cantor set in M . Then itis not diÆ
ult to obtain that(4.5) C1 �1"�d � N"(K) � C2�1"�d ; d = ln 2ln 3and 
onsequently dimF (K) = d = ln 2ln 3 .Consider now the examples of in�nite dimensional sets (i.e. dimF (K) =1).The following two examples give the typi
al asymptoti
s for the entropy in thespa
es of analyti
al fun
tions.Example 4.3. Let K be the set of all analyti
 fun
tions f in a ball B(R) of radiusR > 1 in C n su
h that kfkL1(B(R)) � 1 and let M be the spa
e C(BRe), whereBRe = fz 2 C n : Im zi = 0 ; jzj � 1g. Thus, K 
onsists of all fun
tions fromC(BRe) whi
h 
an be extended holomorphi
ally to the ball B(R) � C n and theC-norm of this extension is not greater then one. Then(4.6) C1 �ln 1"�n+1 � H " (K;M ) � C2�ln 1"�n+1For the proof of this estimate see [22℄.Example 4.4. Let M be the same as in previous example and let K be the set ofall fun
tions f in M whi
h 
an be extended to the entire fun
tion bf in C n whi
hsatisfy the estimate(4.7) j bf(z)j � K1eK2jzj; z 2 C nThen, as proved in [22℄,(4.8) C1 �ln 1"�n+1�ln ln 1"�n � H " (K) � C2 �ln 1"�n+1�ln ln 1"�nThe next example gives the typi
al asymptoti
s for the entropy in the 
lass ofSobolev spa
es in bounded domains.Example 4.5. Let 
 be smooth bounded domain in Rn andW l1;p1(
) ��W l2;p2(
) ; 0 � li <1; 1 < pi <1; l1 > l2i.e., a

ording to the embedding theorem l1n � 1p1 > l2n � 1p2 .Let now M =W l2;p2(
) and K be the unitary ball in W l1;p1(
). Then(4.9) C1 �1"� nl1�l2 � H " (K) � C2�1"� nl1�l2The proof of this estimate 
an be found in [30℄.The following 
lass of fun
tions will be essentially used in the next Se
tion inorder to obtain the lower bounds of "-entropy of attra
tors.24



De�nition 4.3. Let us denote by B � (Rn ) = B� (Rn ; C ) the subspa
e of L1(Rn ; C )whi
h 
onsists of all fun
tions � with the Fourier transform b� satisfying the 
ondi-tion(4.10) supp b� � [��; �℄nIt is well-known that every fun
tion � 2 B� 
an be extended to entire fun
tion~�(z) 2 A(C n ) whi
h satisfy the estimate(4.11) supx2Rn j~�(x+ iy)j � Ck�;Rnk0;1 � e�Pni=1 jyijMoreover, every fun
tion � 2 L1, whi
h possesses the entire extension ~� satisfying(4.11) belongs in fa
t to the spa
e B� .Example 4.6. Let K = B(0; 1; B� ), M = C(BR0 ). Then(4.12) H " (B(0; 1; B� ); Cb(BR0 )) � C(R+K ln 1" )n ln 1" ; " � "0 < 1Moreover, C and K are independent of R.For the proof of this estimate see for instan
e [33℄. We formulate in 
on
lusionthe lower bounds for the entropy form Example 4.6.Proposition 4.1. The following estimate is valid for R � R0 and " < "0(4.13) H " �B(0; 1; B� ); Cb(BR0 )� � CRn ln 1"where the 
onstant C is independent of R and ".For the proof of (4.13) see for instan
e [22℄ or [33℄. Thus, the estimate (4.12) issharp for R � ln 1" and R >> ln 1" . For the 
ase R << ln 1" we formulate only thefollowing result (see [33℄).Proposition 4.2. For every Æ > 0 there exists CÆ > 0 su
h that(4.14) H " �B(0; 1; B� ); C(B10)� � CÆ �ln 1"�n+1�ÆAnd 
onsequently, the estimate (4.12) is sharp for the 
ase R << ln 1" also.Remark 4.1. Instead of the spa
es B � one 
an 
onsider a slightly general 
lassB�;� , � 2 Rk whi
h 
onsists of fun
tions � with Fourier transform b� satisfying theassumption(4.15) supp b� � � + [��; �℄nNote that the spa
e B �;� is isomorphi
 to B� and this homeomorphism is given bymultipli
ation on the fun
tion ei�:x. Consequently, the estimates (4.12) and (4.14)remain valid for the 
lass B �;� as well.We will need also the spa
e of real parts of fun
tions from B �;� (Rn ; C ).De�nition 4.4. De�ne the spa
e BRe�;� by the following expression:(4.16) BRe�;� (Rn ;R) := f� 2 L1(Rn ) : 9u 2 B �;� (Rn ; C ); � = ReugRemark 4.2. Evidently, BRe�;� � B�;�+B�;�� . Moreover, the analogues of estimates(4.13) and (4.14) are valid for this spa
e as well. The proof of this fa
t 
an be derivedin the same way as for the 
ase � = 0 (see e.g. [33℄).25



x5 The entropy of the attra
tor: the upper bounds.In this Se
tion using the te
hnique developed in [33℄ we obtain the upper es-timates of "-entropy for the attra
tor A of the equation (2.1). Re
all that we
onstru
ted the attra
tor A whi
h was 
ompa
t only in F-spa
e �lo
 but not inthe uniform topology of �b(
). That is why we will estimate the entropy of therestri
tions A��
\BRx0 of the attra
tor A to an arbitrary ball BRx0 in terms of threeparameters ", R and x0.Theorem 5.1. Let the assumptions of Se
tion 2 be valid and let(5.1) vol
;x0(R) = vol(
 \ BRx0)Then for every R 2 R+ , x0 2 
, and " � "0 < 1(5.2) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1"where the 
onstants C, K and "0 are independent of R and x0 2 
.The proof of this Theorem is based on the estimates (2.60) and (2.61) with aspe
ial 
hoi
e of the weight fun
tion � and 
ompletely analogous to the proof of[33,Th. 8.1℄. For the 
onvenien
e of the reader we give below a sket
h of this proof.De�ne a family of weight fun
tions with the rate of growth 1 by the followingformula(5.3)  R;x0(x) = � eR�jx�x0j if jx� x0j � R1 if jx� x0j � RIt follows from the de�nition of these fun
tions that(5.4) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � H " �A;W 2;qb; R;x0 (
)�Hen
e, instead of estimating the entropy of the restri
tion A��
\BRx0 it is suÆ
ientto estimate the entropy of the attra
tor in weighted Sobolev spa
es W 2;qb; R;x0 (
).Let now u1(t) and u2(t) be two solutions of the equation (2.1) whi
h belong tothe attra
tor A. Then, a

ording to the estimates (2.61)(5.5) ku1(1)� u2(1)kW 2;qb; q=2R;x0 (
) � Cku1(0)� u2(0)kL2b; R;x0 (
)Here the 
onstant C is independent of u1; u2 2 A. (Moreover, sin
e R;x0(x + y) � ejxj R;x0(y)then C R;x0 � 1 and 
onsequently C is independent of R and x0 also.)Indeed, applying the operator supz2
  R;x0(z)q=2 to the both sides of (2.61) (inwhi
h x0 is repla
ed by z) we obtain thatku(1)� u2(1)kqW 2;qb; q=2R;x0 (
) �� C �supz2
 R;x0(z) Zx2
 e�"jx�zjku1(0)� u2(0);
 \ B1xk20;2 dx�q=226



Applying the estimate (1.17) to the right-hand side of the previous formula wederive (5.5).The estimate (5.5) together with the des
ription (3.2) of the attra
tor A impliesimmediately that(5.6) H " �A;W 2;qb; q=2R;x0 (
)� � H "=(2C) �A; L2b; R;x0 (
)�The estimate (5.6) redu
es our problem to estimating the entropy of the attra
torin the spa
e L2b; R;x0 (
).The following 
orollary of the estimate (2.60) (whi
h 
an be easily derived in thesame way as (5.5)) is of fundamental signi�
an
e for this estimation: let u1 and u2be arbitrary two solutions of the equation (2.1) whi
h belong to the attra
tor, thenthe following estimate is valid:(5.7) ku1(1)� u2(1)kW 1;2b; R;x0 (
) � Cku1(0)� u2(0)kL2b; R;x0 (
)where the 
onstant C depends only on the equation.It has been proved in [33℄ that (5.7) implies the following re
urrent estimateLemma 5.1[33℄. Let (5.7) be valid. Then(5.8) H "=2k �A; L2b; R;x0� � H " �A; L2b; R;x0�+ k lnMk(")where(5.9) lnMk(") � C vol
;x0(R + L ln 2k" )Moreover, the 
onstants C and L is independent of k, R, " � "0 and x0.The estimate (5.2) is an immediate 
orollary of (5.8). Indeed, sin
e A is boundedin �b then there exists R0 > 0, su
h that HR0 (A; L2b;�R;x0 ) = 0 for every R and x0.The estimate (5.8) implies now that(5.10) HR0=2k �A; L2b;�R;x0� � Ck vol
;x0(R+ L ln 2kR0 )Fixing now k � ln R0" and using (5.4) and (5.6) we obtain (5.2). Theorem 5.1 isproved.Re
all now a number of standard 
orollaries of the estimate (5.1) (see [15℄, [33℄,and [36℄).Corollary 5.1. Sin
e Cb(
) �W 2;qb (
) then(5.11) H " �A; C(
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1"Corollary 5.2. Let 
 = Rn . Then vol
;x0(r) = 
rn and 
onsequently(5.12) H " �A;W 2;qb (BRx0)� � ~C �R+K ln 1"�n ln 1"27



Taking R = ln 1" we obtain that(5.13) H " �A;W 2;qb (Bln 1"x0 )� � C1�ln 1"�n+1Note that the estimate (5.12) gives the same type of upper bounds for R = 1 andR = ln 1" .Corollary 5.3. Let 
 be a bounded domain. Then Theorem 5.1 implies the esti-mate(5.14) H " �A;W 2;qb (
)� � C vol(
) ln 1"whi
h re
e
ts the well-known fa
t that in this 
ase the attra
tor A has the �nitefra
tal dimension.Corollary 5.4. Let 
 = Rk � !n�k be a 
ylindri
al domain where ! is bounded.Then the estimate (5.1) gives the following bound of the "-entropy of the attra
-tor A:(5.15) H " �A;W 2;qb (
 \ BRx0)� � C �R+K ln 1"�k ln 1"De�nition 5.1 [22℄. Let A � �b(
) be a 
ompa
t set in the spa
e �lo
(
). Thenthe "-entropy per unit volume is de�ned to be the following number:(5.16) H "(A) = lim supR!1 H " �A;W 2;qb (
 \ BR0 )�vol
;0(R)Corollary 5.5. The following estimate is valid:(5.17) H "(A) � C ln 1"Indeed, the estimate (5.17) is an immediate 
orollary of the estimate (5.2) andtrivial assertion(5.18) limR!1 vol
;x0(R+ C1)vol
;x0(R) = 1De�nition 5.2. Let bhsp(A) be the following number(5.19) bhsp(A) = lim sup"!0 H "(A)ln 1"Corollary 5.6. Let the assumptions of Theorem 6.1 hold. Then(5.20) bhsp(A) <1Remark 5.1. The relations between the quantity bhsp(A) (whi
h is 
alled belowthe modi�ed (spatial) topologi
al entropy) and the phenomena of spatial 
haotisityin the RDE in unbounded domains will be 
lari�ed in Se
tions 7 and 8.28



x6 Infinite dimensional unstablemanifolds and lower bounds of "-entropyIn this Se
tion we derive using the te
hnique of in�nite dimensional manifoldsdeveloped in [14℄, [33℄ the lower bounds for the entropy of the attra
tor A. Werestri
t ourselves to 
onsider the spatially homogeneous 
ase 
 = Rn , g � 0. Notethat in this 
ase the equation f(z) + �0z = 0 always has at least one solutionz0 = (z10 ; � � � ; zk0 ) 2 Rk (due to the assumptions (2.2)) and 
onsequently the equa-tion (2.1) has at least one spatially homogeneous equilibria point u(t) � z0. We willobtain the lower bounds for the attra
tor's entropy under the additional assump-tion that the equation (2.1) possesses at least one exponentially unstable spatialhomogeneous equilibria point z0 2 Rk (without loss of generality we will assumebelow that z0 = 0). To be more pre
ise it is assumed that the equation (2.1) hasthe view(6.1) �tu = a�xu+Bu� ~f(u)where ~f 2 C2(Rk ;Rk ) su
h that ~f(0) = ~f 0(0) = 0, the matrix B 2 L(Rk ;Rk )(B = �f 0(z0) � �0) and the spe
trum �(L) of the linearization L := �x + Bsatis�es the assumption(6.2) �(L) \ fRe z > 0g 6= ?The main aim of this Se
tion is to show that the assumptions (6.1) and (6.2) aresuÆ
ient for obtaining the lower bounds of the entropy of the attra
tor of the sametype as the upper ones obtained in previous Se
tion.As usual we start with studying the linear nonhomogeneous problem(6.3) �tv �Lv = h(t)whi
h 
orresponds to the linearization of (6.1) at u � 0. To this end we need thefollowing fun
tional spa
es.De�nition 6.1. Let 
 2 R. Then the spa
e L
 (E), where E is a 
ertain Bana
hsubspa
e of distributions D0(Rn ), is de�ned by the following expression:(6.4) L
 (E) := fu 2 L1lo
(R� ; E) : kukL
(E) := supt�0 e�
tku(t)kE <1gLemma 6.1. Let the exponent 
 > Re�(L). Then for every h 2 L
 (Lqb(Rn )) theequation (6.3) possesses a ba
kward solution u(t), t � 0 whi
h is unique in the 
lassu 2 L
 (W 2��;qb (Rn )). Thus, a linear operator(6.5) T
 : L
 (Lqb)! L
 (W 2��;qb ); u(t) := (T
h)(t)is well de�ned for every � > 0. Moreover, there is a positive exponent " > 0 su
hthat(6.6) k(T
h)(t); B1x0kq2��;q �� C� sups2(�1;t℄ e(
+")(t�s)� supx2Rn e�"jx�x0jkh(s); B1xkq0;q�29



where the 
onstant C� is independent of x0 and t.Proof. Note that due to the smoothing property for solutions of the linear equation(6.3) (see Propositions 2.1, 2.2 and Theorem 2.3) it is suÆ
ient to dedu
e theestimate (6.6) only for W 1;2-norm in the left-hand side (instead of W 2��;q-norm).Note also that without loss of generality we may assume that 
 = 0.Let us 
onsider for the �rst the 
ase where h 2 L0 (L2(Rn )) (the general 
ase willbe redu
ed below to this one). It is well known (see e.g. [30℄) that the operator Lgenerates an analyti
 semigroup in L2(Rn ) and 
onsequently, due to the spe
tralmapping theorem, �(eL)nf0g = e�(L) (see e.g. [9℄). Note also that a

ording toour assumption Re�(L) < 0 (
 = 0!) therefore there is a positive � > 0 su
h thatRe�(L) < �2�. Thus, the spe
tral radius of the exponent eL satis�es the inequality(6.7) r(eL) � e�2� < 1and 
onsequently, the Duhamel formula(6.8) v(t) := Z t�1 eL(t�s)h(s) dsde�nes a solution v 2 L0 (L2(Rn )) whi
h satis�es the estimate(6.9) kv(t)kL2(Rn) � C sups2(�1;t℄ e��(t�s)kh(s)kL2(Rn); t � 0Moreover, this solution is unique in the 
lass L0 (L2).The estimate (6.9) together with a standard (L2;W 1;2)-smoothing property forthe solutions of (6.3) yield(6.10) kv(t)k1;2 � C1 sups2(�1;t℄ e��(t�s)kh(s)k0;2It is 
onvenient for us to write the last estimate in the following equivalent form:(6.11) sups2(�1;t℄ e��(t�s)kv(s)k1;2 � C2 sups2(�1;t℄ e��(t�s)kh(s)k0;2In order to redu
e the general 
ase h 2 L0 (L2b) to the one 
onsidered above we �xan arbitrary x0 2 Rn and introdu
e a new unknown fun
tion wx0(t) := v(t)~�";x0 ,where ~�";x0(x) := e�"(1+jx�x0j2)1=2 and " > 0 is a small parameter whi
h will bespe
i�ed below. Note that the weight fun
tions ~�";x0 are equivalent to �";x0 butsmooth and satisfy the following 
onditions(6.12) jrx ~�";x0 j � C"~�";x0 ; jD2 ~�";x0 j � C"2 ~�";x0It is not diÆ
ult to verify that the fun
tion wx0 satis�es the equation(6.13) �twx0 �Lwx0 = ~�";x0h+K1(x)wx0 +K2(x)rxwx0 := hx0(t)Moreover, the estimates (6.12) imply that jKi(x)j � C2".30



Evidently hx0 2 L0 (L2), 
onsequently the estimate (6.11) yields(6.14) sups2(�1;t℄ e��(t�s)kwx0(s)k1;2 � sups2(�1;t℄ e��(t�s)khx0(s)k0;2 �� C3 sups2(�1;t℄ e��(t�s)k�";x0h(s)k0;2 + C3" sups2(�1;t℄ e��(t�s)kwx0(s)k1;2Fixing in (6.14) " > 0 small enough we derive thatkv(t); B1x0k1;2 � C sups2(�1;t℄ e��(t�s)k�";x0v(s)k1;2 �� C1 sups2(�1;t℄ e��(t�s) supx2Rn��"=2;x0(x)kv(s); B1xk1;2	The estimate (6.6) is proved. Applying the operator supt2R� e�
t supx02Rn to theboth sides of the inequality (6.6) we derive, using (1.4) that(6.15) kvkL
(W 2��;qb ) � C5khkL
(Lqb)Lemma 6.1 is proved.Corollary 6.1. Let the assumptions of Lemma 6.1 hold and let � be a weightfun
tion whi
h satis�es (1.1) with a suÆ
iently small rate of growth. Then theoperator T
 
onstru
ted in Lemma 6.1 is bounded as the operator from L
 (Lqb;�) toL
 (W 2��;qb;� )Indeed, this assertion is an immediate 
orollary of (6.6) and (1.4).Let us study now the homogeneous problem (6.3) (the 
ase h � 0).Lemma 6.2. Let the spe
trum of L satisfy the assumption (6.2). Then there exist
 > 0, � > 0, �0 2 Rk , e 2 Rk and the operator P
 : B�;�0 ! L
 (W 2;qb (Rn ; C k ))(where the spa
e B�;�0 := B �;�0 (Rn ; C ) is de�ned by (4.15)) su
h that1. For every u0 2 B�;�0 (Rn ) the fun
tion v 2 L
 (W 2;qb (Rn )) de�ned by v(t) :=P
(u0)(t), t � 0 is a solution of (6.3) with h � 0.2. 2
 > Re�(L).3. Let S
(u0) := P
(u0)(0) and let �ez := z:ejej2 is the orthogonal proje
tion tothe ve
tor e, then �eS
(u0) = u0 for every u0 2 B�;�0 .4. For every N 2 R+ and u0 2 B�;�0 the following estimate holds(6.16) kP
(u0)(t); B1x0k2;q � CNe
t supx2Rn� 1(1 + jx� x0j2N )1=2 ku0; B1xk0;1�Moreover, the 
onstant CN is independent of x0 2 Rn .Proof. Applying the x-Fourier transform to homogeneous equation (6.3) we willhave the equation(6.17) �tbv(t)� bL(�)bv(t) = 0where bL(�) := �aj�j2 +B. Note, that the assumption (6.2) implies that there is apoint �0 2 Rk and b�0 2 �( bL(�0)) su
h that Re b�0 > 0. Moreover, without loss of31



generality we may assume that Re�( bL(�)) < b�0 + " for every � 2 Rk , where " > 0is small enough to satisfy " < Re b�0=3.Let us denote by b�(�) the spe
trum of �( bL(�)). Then (sin
e the pen
il bL(�) ispolynomial with respe
t to �) b�(�) is an analyti
 fun
tion with respe
t to � on the
orresponding k-sheeted Riemann surfa
e. Moreover, without loss of generality wemay assume also that �0 6= 0 and is not a bran
h point for this fun
tion. Denote byb�0(�) the analyti
 bran
h of b�(�) in the neighborhood of �0 su
h that b�0(�0) = b�0.Thus, we have proved that there exists a neighborhood Br0�0 of �0 and smoothfun
tions b�0 : Br0�0 ! C and e0 : Br0�0 ! C k su
h that(6.18) bL(�)e0(�) = b�0(�)e0(�); e0(�) 6= 0Evidently, we may �x r0 > 0 in su
h a way that Re b�0(�) > Re�0 � " for every� 2 Br0�0 and r0 < j�0j. Moreover, sin
e e0(�0) 6= 0 then either Re e0(�0) 6= 0 orIm e0(�0) 6= 0. De�ne e := Re e0(�0) if Re e0(�0) 6= 0 and e := Im e0(�0) otherwise.Then it it is possible to normalize the eigenve
tor e0(�0) in su
h a way that(6.19) �ee0(�) � 1; for every � 2 Br0�0(de
reasing the radius r0 if ne
essary).Let us �x now the exponent � > 0 and the 
orresponding spa
e B�;�0 in su
h away that supp b� � Br0=2�0 for every � 2 B �;�0 and de�ne the solution of (6.3) by theexpression(6.20) bv(t; �) := eb�0(�)tb�(�)e0(�)We 
laim that the operator P
 : � ! v, where 
 = Re b�0 � ", de�ned by (6.20)satis�es all assumptions of the Lemma.Indeed, de�ne a 
ut-o� fun
tion  2 C10 (Rn ) su
h that  (�) � 1 if � 2 Br0=2�0and  (�) = 0 if � =2 Br0�0 . Then the formula (6.20) 
an be rewritten in the followingequivalent form:(6.21) bv(t; �) = e
t	(t; �)b�(�); � 2 Rkwhere 	(t; �) := e(b�0(�)�b�0+")t (�)e0(�). Moreover, it is not diÆ
ult to verify thatdue to our 
onstru
tion of fun
tions  ; b�0 and e0(6.22) ZRn jDN	(t; �)j2 d� � CNuniformly with respe
t to t 2 R� . Thus, the operator P
 
an be represented as a
onvolution operator(6.23) P
(u0)(t) = e
t �F�1� 	(t; �)� � u0; u0 2 B�;�0Moreover, it follows from (6.22) that the 
onvolution's kernel K(t; x) in (6.23)satis�es the estimate(6.24) jK(t; x)j := j(F�1� 	(t; �)(x)j � CN 1(1 + jxj2N )1=232



for every N 2 R+ and 
onsequently(6.25) jv(t; x0)j � ~CNe
t supx2Rk ku0; B1xk0;1(1 + jx� x0j2N )1=2The estimate (6.16) is an immediate 
orollary of (6.25) and the smoothing propertyfor the linear equation (6.3). (Note that this estimate implies parti
ularly thatthe operator P
 is really a bounded operator from B�;�0 to L
 (W 2;qb )). The restproperties of P
 announ
ed in Lemma 6.2 are evident. Indeed, the fa
t that forevery u0 2 B �;�0 v := P
u0 is a solution of (6.3) follows from the representation(6.20). The se
ond assertion is a 
orollary of our 
hoi
e of the exponent " (2
 =2(b�0� ") > b�0+ " > Re�(L), be
ause " < b�0=3) and the third one is a 
orollary ofthe normalization (6.19). Lemma 6.2 is proved.Corollary 6.2. Let the assumptions of Lemma 6.2 hold. Then for every weightfun
tion � with a polynomial rate of growth (see (1.18)) the following estimate isvalid:(6.26) kP
(u0)(t)kW 2;qb;� (Rn) � Ce
tku0kL1b;�1=q (Rn); u0 2 B �;�0where the 
onstant C is independent of the 
on
rete 
hoi
e of the weight � satisfy-ing (1.18).Indeed the assertion of the lemma is an immediate 
orollary of (6.16) and (1.19).Re
all we have 
onstru
ted the 
omplex valued solution P
(u0) of the equation(6.3) but we need in the following only the real valued solutions of this equa-tion. Sin
e the operator L has real 
oeÆ
ients then ReP
(u0) is the appropriatereal-valued solution. Moreover, the assertions of Lemma 6.2 remain valid for thisoperator ex
ept of p. 3, whi
h should be repla
ed by(6.27) �eS
(u0) = Reu0; for every u0 2 B �;�0Note however, that Reu0; u0 2 B�;�0 if and only if u0 � 0 (due to the fa
t that byde�nition supp bu0 � Br0�0 and r0 < j�0j. Moreover, the following is true.Proposition 6.1. Let pn� < j�0j. Then a fun
tion u0 2 B�;�0 (R; C ) is uniquelydetermined by it's real part Reu0. Moreover, for every N 2 R+ the followingestimate is valid:(6.28) ju0(x0)j � CN supx2Rn kReu0; B1xk0;1(1 + jx� x0j2N )1=2where the 
onstant CN is independent of x0 2 Rn and 
onsequently the spa
es BRe�;�0and B �;�0 are isomorphi
. We denote this isomorphism by R.Proof. Indeed, sin
e u0 2 B�;��0 and pn� < j�0j thensupp bu0 \ supp
u0 = ?Let  (�) 2 C10 (Rn ) be a 
ut-o� fun
tion, su
h that  (�) � 1 if � 2 �0 + [��; �℄nand  (�) � 0 if � 2 ��0 + [��; �℄n and let K(x) := F�1�!x . Then(6.29) u0 = 2K �Reu0and jK(x)j � CN (1 + jxj2N )�1=2. The estimate (6.28) is an immediate 
orollaryof (6.29). Proposition 6.1 is proved.We will write below P
 instead ReP
 and S
 instead of ReS
 where it will notlead to misunderstanding. 33



Corollary 6.3. Let � be a weight fun
tion with the polynomial rate of growth (see(1.18)) and let the assumptions of Lemma 6.2 hold. Then the following estimate isvalid:(6.30) ku0kL1b;� � CkS
u0kL1b;� ; u0 2 B�;�0where S
u0 := (ReP
u0)(0).Indeed, the assertion of this 
orollary follows from (6.27) (6.28) and (1.19).We are in a position now to formulate the main te
hni
al result of this Se
tion.Theorem 6.1. Let the assumptions of Theorem 3.1 be valid and let in addition theequation (2.1) 
an be represented in the form (6.1) with the exponentially unstablelinear part (the assumption (6.2) is also assumed to be satis�ed). Then there existsr > 0 and a C1-map(6.31) U0 : B(0; r; B�;�0 (Rn ; C )) ! Awhere B(0; r; B�;�0 ) is a r-ball in the spa
e B �;�0 
entered in 0 and the 
onstants�; �0 are the same as in Lemma 6.2, and for every u0 2 B(0; r; B�;�0 ) the followingestimate is valid(6.32) kU0(u0)� S
(u0)k�b(Rn) � Cku0k2L1b (Rn)Moreover, this map is a Lips
hitz 
ontinuous embedding in the lo
al topology in thefollowing sense: for every N 2 R+ and every x0 2 Rk we have the estimates(6.33) 8<: kU0(u1)� U0(u2); B1x0k2;q � CN supx2
 ku1�u2;B1xk0;1(1+jx�x0j2N )1=2ku1 � u2; B1x0k0;1 � CN supx2
 kU0(u1)�U0(u2);B1xk2;q(1+jx�x0j2N )1=2whi
h are valid for every u1; u2 2 B(0; r; B�;�0 ).Proof. The proof of this theorem is based on the impli
it fun
tion theorem and onthe following lemma.Lemma 6.3. Let f 2 C2 satis�es f(0) = f 0u(0) = 0 and let the exponent � > 0be �xed in su
h a way that the embedding W 2��;q � C holds. Then the Nemitskijoperator Fu = f(u) belongs to the spa
e C1(L
 (W 2��;qb );L2
 (Lqb)).The assertion of this lemma 
an be veri�ed in a dire
t way (see [36℄, for example).Now we are going to �nd the ba
kward solutions of the problem (6.1) near z0 = 0equilibria point using the impli
it fun
tion theorem. To this end we rewrite thisequation in the form �tu�Lu = � ~f(u); t � 0Let us �x 
 su
h as in Lemma 6.2, � as in Lemma 6.3 and 
onsider the equation(6.34) u+ T2
 ~f(u) = P
u0; u 2 L
 (W 2��;qb )where u0 2 B�;�0 and � satis�es the 
onditions of Lemma 6.2. Note that everysolution of (6.34) is simultaneously a solution of the equation (6.1) hen
e it issuÆ
ient to solve (6.34) in L
 (W 2��;qb ). 34



To this end we introdu
e a fun
tion F : L
 (W 2��;qb ) � B�;�0 ! L
 (W 2��;qb ) byformula F(u; u0) = u+ T2
 ~f(u)�P
u0It follows from Lemmata 6.1, 6.2 and 6.3 that the fun
tion F belongs to the
lass C1(L
 (W 2��;qb ) � B �;�0 ;L
 (W 2��;qb )) and DuF(0; 0) = Id. Hen
e due tothe impli
it fun
tion theorem (see [31℄ for instan
e) there exists a neighborhoodB(0; r; B�;�0 ) and a C1-fun
tionU : B(0; r; B�;�0 )! L
 (W 2��;qb )su
h that F(U(u0); u0) � 0 and 
onsequently U(u0)(t) is a ba
kward solution ofthe problem (6.1). The equation (6.34) and Lemmata 6.1{6.3 imply now that(6.35) kU(u0)�P
u0kL2
(W 2��;qb ) � Ck ~f(U(u0))kL2
(Lqb) �� C1kU(u0)k2L
(W 2��;qb ) � C2ku0k2B�;�0Re
all that the fun
tion u(t) := U(u0)(t) satis�es the equation (6.1). Consequently,due to the smoothing property for the nonlinear equation (6.1) (see Proposition 2.2and the end of the proof of Theorem 2.1) and due to the fa
t that ~f(0) = 0 wederive that ku(t+ 1)k�b � Q(ku(t)kW 2��;qb )ku(t)kW 2��;qband therefore(6.36) kU(u0)kL
(�b) � Q(kU(u0)kL0(W 2��;qb (
))kU(u0)kL
(W 2��;qb ) � Cku0kB�;�0for every u0 2 B(0; r; B�;�0 ). Analogously, the fun
tion w(t) := U(u0)(t) � P
u0satis�es the equation �tw(t) � a�xw(t) �Bw(t) = � ~f(u(t))Applying the smoothing property to this equation and using (6.36) and the fa
tthat ~f(0) = ~f 0(0) = 0 we dedu
e from (6.35) that(6.37) kU(u0)�P
u0kL2
(�b) � CkU(u0)�P
u0kL2
(W 2��;qb )++ CkU(u0)k2L
(W 2��;qb ) � C1ku0k2B�;�0Let us de�ne now U0(u0) = U(u0)��t=0. Then (6.37) together with the de�nitionof S
 imply the estimate (6.32). The assertion U0(B(0; �0; B�;�0 )) � A followsimmediately from des
ription (3.2) of the attra
tor A and from the fa
t that thesolution u(t) = U(u0)(t) of the problem (6.1) whi
h is de�ned for the �rst only fort � 0 
an be extended due to Theorems 2.1 and 2.2 to a 
omplete solution u(t),t 2 R and u(0) = U0(u0).Thus, it remains to verify the estimates (6.33). Let u10; u20 2 B(0; r; B�;�0 ),ui(t) := U(ui0)(t) be the 
orresponding ba
kward solutions of (6.1), v0 := u10 � u20and v(t) := u1(t)� u2(t). Then this fun
tion satis�es the equation(6.38) v + T2
( ~f(u1)� ~f(u2))�P
v0 = 035



Let us �x N 2 R+ , x0 2 Rn and the 
orresponding weight fun
tion �N;x0(x) =(1+jx�x0j2N )�1=2. The equation (6.38) together with Lemma 6.1 and Corollary 1.4imply that(6.39) kv �P
v0kL
(W 2��;qb;�N;x0 ) � CNk ~f(u1)� ~f(u2)kL2
(Lqb;�N;x0 )where CN is independent of x0.Re
all that ~f 2 C2 and ~f(0) = ~f 0(0) = 0, 
onsequently(6.40) j ~f(u1)� ~f(u2)j � Q(ju1j+ ju2j)(ju1j+ ju2j)ju1 � u2jfor a some monotoni
 fun
tion Q. The estimates (6.40) and (6.36) imply that(6.41) k ~f(u1)� ~f(u2)kL2
(Lqb;�N;x0 ) � bQ�ku1kL0(W 2��;qb ) + ku2kL0(W 2��;qb )��� �ku1kL
(W 2��;qb ) + ku2kL
(W 2��;qb )� kvkL
(W 2��;qb;�N;x0 ) �� bQ(2Cr)2CrkvkL
(W 2��;qb;�N;x0 )for every B(0; r; B �;�0 ). De
reasing r if ne
essary we may assume that(6.42) k ~f(u1)� ~f(u2)kL2
(Lqb;�N;x0 ) �� Æ=CN �kv �P
v0kL
(W 2��;qb;�N;x0 ) + kP
v0kL
(W 2��;qb;�N;x0 )�where Æ = Æ(r) 
an be �xed arbitrarily small (if r > 0 is small enough). Theestimates (6.39) and (6.42) yield that(6.43) kv �P
v0kL
(W 2��;qb;�N;x0 ) � ÆkP
v0kL
(W 2��;qb;�N;x0 )Applying (6.26) to the estimate (6.43) (and assuming that r is suÆ
iently smallthat Æ < 1=2) we derive that(6.44) kvkL
(W 2��;qb;�N;x0 ) � C2kv0kL1b;�N=q;x0Note that the fun
tion v(t) is a solution of (2.57), 
onsequently due to (6.26), (6.44)and due to the smoothing property (2.61)(6.45) kU0(u10)� U0(u20)k�b;�N;x0 � kU(u10)� U(u20)kL
(W 2��;qb;�N;x0 ) �� CkvkL
(W 2��;qb;�N;x0 ) � C1kv0kL1b;�N=q;x0Sin
e the 
onstant C1 in (6.45) is independent of x0 then the �rst estimate of(6.33) is an immediate 
orollary of this estimate. Thus, it remains to prove onlythe se
ond one. In order to do so we re
all that �eS
u0 � Reu0 (see Lemma 6.2)and 
onsequently (due to (6.30))(6.46) kS
v0kW 2��;qb;�N;x0 � CkS
v0kL1b;�N=q;x0 �� C1kRe v0kL1b;�N=q;x0 � C2kv0kL1b;�N=q;x036



The estimates (6.43) and (6.26) imply that(6.47) kS
v0kW 2��;qb;�N;x0 � kv(0)k�b;�N;x0 + CÆkv0kL1b;�N=q;x0Combining (6.46) and (6.47) and �xing Æ > 0 in su
h a way that CÆ < C2=2 we�nally obtain that(6.48) kv0kL1b;�N=q;x0 � C3kv(0)k�b;�N;x0Theorem 6.1 is proved.Corollary 6.4. Let the assumptions of Theorem 6.1 be valid and let � be a weightfun
tion with the polynomial rate of growth (see (1.18)). Then the map U0 real-izes the Lips
hitz 
ontinuous homeomorphism between B(0; r; B �;�0 ) and it's imageU0(B(0; r; B �;�0 )) in the following sense:(6.49) C1ku10 � u20kL1b;� � kU0(u10)� U0(u20)k�b;�q � C2ku10 � u20kL1b;�Indeed, the estimate (6.49) is an immediate 
orollary of (6.33) and (1.19).Remark 6.1. Re
all that the spa
es B � and B�;�0 are isomorphi
 and the mul-tipli
ation operator G�0u0 := ei�0:xu0 realizes this isomorphism. Moreover, sin
ejei�0:xj = 1 then this isomorphism preserves the norms k�; BRx0k0;1, parti
ularlyG�0B(0; r; B� ) = B(0; r; B�;�0 ) and the operator(6.50) ~U0 := U0 Æ G�0 : B(0; r; B� )! Arealizes a Lips
hitz 
ontinuous embedding whi
h satis�es the estimates (6.49)Corollary 6.5. Let fTh; h 2 Rng be group of spatial shifts: (Thu)(x) := u(x+ h)and let K := B(0; r; B � (Rk ; C )), where r is the same as in Theorem 6.1. Then,evidently, ThA = A and ThK = K . Moreover the map ~U0 : K ! A 
ommutes withthis group:(6.51) Th ~U0(u0) = ~U0(Thu0); for every h 2 RnIndeed, the assertion (6.51) is an immediate 
orollary of our 
onstru
tion of themap ~U0 and of the uniqueness part of the impli
it fun
tion theorem.Corollary 6.6. Let u10; u20 2 B(0; �; B �;�0 ) and � � r (where r; �; �0 are the sameas in Theorem 6.1). Then for every R > R0(6.52) kU0(u10)� U0(u20)kW 2�Æ;pb (BR0 ) � LkRe(u10 � u20)kL1(BR0 ) � C�2where C and L are independent of R.Indeed,kU0(u10)� U0(u20)k�b(BR0 ) �� kS
u10 � S
u20k�b(BR0 ) � kU0(u10)� S
u10k�b(Rn) + kU0(u20)� S
u20k�b(Rn) �� LkS
u10 � S
u20kL1(BR0 ) � C1(ku10k2B�;�0 + ku20k2B�;�0 ) �� LkRe(u10 � u20)kL1(BR0 ) � 2C1�2Here we have used the fa
t that �eS
u0 = Reu0.Now we are in a position to obtain the lower bounds for the "-entropy of theattra
tor A of the equation (6.1). 37



Theorem 6.2. Let the assumptions of Theorem 6.1 hold. Then the attra
tor A ofthe problem (6.1) possesses the following entropy estimates:(6.53) C2Rn ln 1" � H " �A;W 2;qb (BR0 )� � C1(R +K ln 1" )n ln 1" ; " � "0 < 1Moreover, for every Æ > 0 there exists CÆ > 0 su
h that(6.54) CÆ �ln 1"�n+1�Æ � H " �A;W 2;qb (B10)� � C �ln 1"�n+1Proof. Indeed, let " > 0 be small enough, � = � "2CL�1=2 � r and fun
tions v10 ; v02 2B(0; �; BRe�;�0 ) be su
h that(6.55) kv10 � v20kL1(BR0 ) � "=LThen it follows from (6.52) that(6.56) kU0(Rv10)� U0(Rv20)kW 2;qb (BR0 ) � "=2where R is the isomorphism 
onstru
ted in Proposition 6.1.The estimates (6.55),(6.56) together with the fa
t that U0(Rvi0) 2 A imply that(6.57) H "=4 �A;W 2;qb (BR0 )� � H "=L �B(0;� "2CL�1=2 ; BRe�;�0 ); Cb(BR0 )� == H (2C"=L)1=2 �B(0; 1; BRe�;�0 ); Cb(BR0 )�The estimates (6.53) and (6.54) are an immediate 
orollaries of (4.13) and (4.14)(see also Remark 4.2) and Theorem 5.1. Theorem 6.2 is proved.Corollary 6.7. Let the assumptions of Theorem 6.2 hold. Then(6.58) 0 < C1 ln 1" � H "(A) � C2 ln 1"and 
onsequently(6.59) 0 < C1 � bhsp(A) � C2 <1x7 The spatial 
omplexity of the attra
tor and spatial 
haos.In this Se
tion we 
ontinue to study the attra
tor of the spatially homogeneoussystem (6.1) in 
 = Rn under the assumptions of Theorem 6.1. Re
all that thegroup fTh; h 2 Rng of spatial shifts a
ts on the attra
tor of (6.1)(7.1) ThA = A; (Thu)(x) := u(x+ h); h 2 RnThe main aim of this Se
tion is to study the a
tion of this group on the attra
torfrom the dynami
al point of view. Under this approa
h the semigroup (7.1) will betreated as a dynami
al system with multidimensional 'time' h 2 Rn . (Note that in38



the parti
ular 
ase n = 1 we obtain a usual dynami
al system with one-dimensionaltime.)As a simple 
orollary of the estimates obtained in the previous Se
tion (Theo-rem 6.2) we verify that the topologi
al entropy hsp(A) of the semigroup (7.1) isin�nite and de�ne a new quantitative 
hara
teristi
 bhsp(A) of the 
omplexity ofdynami
s whi
h is o

urred to be �nite and positive for the 
ase of (7.1).Re
all that the usual way to indi
ate the 
haoti
 behavior of a dynami
al systemTh : A ! A is to �nd a 
losed invariant subset M � A in the 
orresponding phasespa
e and 
onstru
t a homeomorphism � :M !M su
h that(7.2) � : (Th��M ;M)! ( bTh;M); ; bTh := � Æ Th Æ ��1where ( bTh;M) is a some model example of the dynami
al system the 
haoti
 be-havior of whi
h is evident. Note also that usually the homeomorphism (7.2) is
onstru
ted only for the appropriate dis
rete subgroup of Th and the model exam-ples ( bTh;M) are the appropriate Bernulli shifts (see e.g. [21℄).It is worth to emphasize that the (multidimensional) symboli
 dynami
s with�nite number of symbols (Bernulli shifts) are not adequate in order to understoodthe spatial dynami
s (7.1) be
ause the topologi
al entropy of su
h shifts is �nitebut in our situation we have the dynami
s with the in�nite topologi
al entropy.That is why we introdu
e below a new model example of 
haos ( bTh;M) whi
h is
lose to the standard Bernulli shifts but adopted to the 
ase of in�nite topologi
alentropy and 
onstru
t the Lips
hitz 
ontinuous embedding of this model to (7.1).We start our exposition with the following de�nition.De�nition 7.1. Let �(x) > 0, � 2 Cb(Rn ) be a weight fun
tion whi
h satis�eslimjxj!1 �(x) = 0 and let A be a 
ompa
t set in �b;� invariant with respe
t to Tha
tion. Then for every R 2 R+ we de�ne a new metri
 on A by formula(7.3) dR;�(x; y) := suph2[�R;R℄n kThx� Thyk�b;� ; x; y 2 ADe�ne now the following 
hara
teristi
s:hsp(A; �) = hsp(A; �; Th) := lim"!0 lim supR!1 1(2R)n H " (A; dR;�)(7.4) bhsp(A; �) := lim sup"!0 1ln 1=" lim supR!1 1(2R)n H " (A; dR;�)(7.5)Remark 7.1. The quantity (4.4) 
oin
ide with the de�nition of the topologi
alentropy for the group Th : A ! A (adopted to the n-dimensional 
ase) (see e.g.[21℄) and (7.5) is one of possible generalizations of this 
on
ept for the 
ase wherethe topologi
al entropy is in�nite. That is why we will 
all (7.5) as the modi�edtopologi
al entropy.The following simple lemma is very important for our purposes.Lemma 7.1. Let the above assumptions hold. Then for every � su
h as in De�-nition 7.1(7.6) hsp(A; �) = hsp(A) := lim"!0 lim supR!1 1(2R)n H " (A;W 2;qb ([�R;R℄n))39



and analogously(7.7) bhsp(A; �) = hsp(A) := lim"!0 1ln 1=" lim supR!1 1(2R)nH " (A;W 2;qb ([�R;R℄n))Parti
ularly these quantitatives are independent of the 
hoi
e of the weight �.Proof. Indeed, sin
e �(x) ! 0 as jxj ! 1 then for every " > 0 there is L = L(")su
h that �(x) < " for jxj > L("), 
onsequently(7.8) H " (A; dR;�) � H "=C (A;W 2;qb ([�R� L("); R+ L(")℄n)for the appropriate C whi
h is independent of R. Therefore(7.9) hsp(A; �) � hsp(A) and bhsp(A; �) � bhsp(A)The opposite inequalities follow from the evident estimate(7.10) suph2[�R;R℄n �(x + h) � �(0) > 0; for jxij � RLemma 7.1 is proved.Remark 7.2. It is well known (see e.g. [21℄) that the topologi
al entropy hsp(A)depends only on the topology on A and independent of the 
hoi
e of the metri
preserving the topology. Note, however, that the modi�ed topologi
al entropybhsp(A) does not possess this property and rigorously speaking is not a topologi
alinvariant.Note also that bhsp is evidently a Lips
hitz invariant, i.e. preserves under theLips
hitz 
ontinuous homeomorphisms. Moreover, if � is Holder 
ontinuous withthe Holder 
onstant 0 < � < 1 then(7.11) bhsp(�(M)) � 1�bhsp(M)(
ompare with the fra
tal dimension).The following theorem justi�es our 
hoi
e of generalization of the topologi
alentropy.Theorem 7.1. Let the assumptions of Theorem 6.2 be valid and let A be theattra
tor of the equation (6.1). Then the group fTh; h 2 Rng of spatial shifts on theattra
tor has the in�nite topologi
al entropy(7.12) hsp(A) =1Moreover, the modi�ed topologi
al entropy of it is �nite and stri
tly positive:(7.13) 0 < C1 � bhsp(A) � C2 <1Indeed, the assertion of the theorem is an immediate 
orollary of Corollary 6.7and Lemma 7.1.Let us study now the spatial 
haos generated the a
tion of fTh; h 2 Rng onthe attra
tor A. We give for the �rst the model 
onstru
tion (7.2) for the 
ase of
ontinuous dynami
s (h 2 Rn ) and after that we simplify this model for the 
aseof dis
rete dynami
s (h 2 Zn). 40



Theorem 7.2. Let the assumptions of Theorem 6.1 be valid and let r and � bethe same as in Theorem 6.1. Let also K be the ball B(0; r; B � ) endowed by thelo
al topology of L1lo
(Rn ). Then the map ~U0 : K ! A de�ned in (6.50) realizes ahomeomorphism(7.14) ~U0 : (Th;K ) ! (Th; ~U0(K ))Moreover, this homeomorphism is Lips
hitz 
ontinuous if we endowed the spa
es Kand A by the topology L1b;� and �b;�q respe
tively (where � is an arbitrary weightfun
tion with the polynomial rate of growth) and 
onsequently this homeomorphismpreserves the modi�ed topologi
al entropy:(7.15) 0 < C1 � bhsp(K ) = bhsp( ~U0(K )) � C2 <1Indeed, the assertion of this theorem is an immediate 
orollary of Theorem 6.1and Corollaries 6.4 and 6.5.Thus, the r-ball K of the spa
e B� together with the group of spatial shiftsfTh; h 2 Rng a
ting on it 
an be 
onsidered as a model example for the topologi
aldes
ription of the spatial 
haos in the rea
tion-di�usion systems in unboundeddomains. Note however that this model is rather 
ompli
ated by itself and it seemsreasonable to simplify it. To this end we restri
t ourselves to 
onsider only thea
tion of a dis
rete subgroup fTh; h 2 Zng of the group of spatial shifts and usethe Kotelnikov-Cartrait interpolation formula for representing the fun
tions fromB� (see e.g. [22℄, [37℄).Proposition 7.1. Every fun
tion u(x) from the 
lass B�0 
an be represented inthe following form:(7.16) u(x) = �l2Znu(Æk)g�;k(x); � > 0where Æ = ��0+� and(7.17) g�;k(x) := �nj=1 sin �(xj � Ækj) � sin(�0 + �)(xj � Ækj)�(�0 + �)(xj � Ækj)2Moreover, g�;k 2 B�0+2�.Let D := fz 2 C : jzj � 1g be a unitary disk on the 
omplex plane and letM := DZn be the spa
e of all fun
tions v : Zn ! D . We endow this spa
e by aFre
het topology generated by the following system of seminorms:(7.18) kv;BR0 k0;1 := supl2Zn;jlj�R jv(l)jand denote the spa
e thus obtained by Mlo
 (It is evident that Mlo
 is a 
om-pa
t metri
 spa
e and it's topology 
oin
ide with the Tikhonov's topology on theDes
artes produ
t DZn). The spa
es Mb and Mb;� where � is a weight fun
tion
an be de�ned analogously.Fix now �0; � > 0 in su
h a way that �0 +2� < � and de�ne a map � :M! B�by the expression(7.19) �(v) := Xl2Znv(l)g�;l(x)where the fun
tions g�;l are de�ned in (7.17). Then the following is true.41



Lemma 7.2. Let the above assumptions hold and let 0 < � < 1. Then(7.20) j�(v)(x)j � C supl2Zn jv(l)j ��nj=1(1 + jxj � lj j2)���=2Moreover, for every R > pn(7.21) k�(v); BÆR0 k0;1 � kv;BR0 k0;1Proof. Indeed, the estimate (7.21) follows immediately from the fa
t that �(v)(Æl) =v(l) for every l 2 Z (see (7.16) and (7.17)).The proof the estimate (7.20) is based on the evident estimate(7.22) jg�;l(x)j � C�nj=1(1 + jxj � lj j2) ; l 2 Zn; x 2 Rnand also 
an be veri�ed in a dire
t way.Corollary 7.2. Let the above assumptions hold. Then there is a 
onstant C =C(�0; �) su
h that(7.23) k�(M)kL1b (Rn) � CMoreover, for every weight fun
tion � with a polynomial rate of of growth � < 1(see (1.18)) the following estimate is valid: Then(7.24) C1kvkMb;� � k�(v)kL1b;� � C2kvkMb;�The assertions of this 
orollary follow from the estimates (7.20), (7.21) and (1.19).Let now �; r > 0 be the same as in Theorem 6.1 and 7.2. Then the estimate(7.23) implies that the map(7.25) ~�(v) := rC �(v); v 2Mwhere C is de�ned in (7.23) realizes an embedding M to K . Moreover, the esti-mate (7.24) remains valid for ~� as well and shows that this embedding is Lips
hitz
ontinuous in the appropriate metri
.Let us 
onsider now a dis
rete subgroup T 0h := fTh; h = Æl; l 2 Nng of thesemigroup of spatial shifts a
ting on K and on the attra
tor A of the equation(6.1). De�ne also the a
tion of this subgroup on the spa
e M by formula(7.26) (T 0Ælv)(m) := v(m+ l); v 2 M; l;m 2 ZnThen the following is true.Lemma 7.3. Let the above assumptions hold. Then the set ~�(M) is invariant withrespe
t to the dis
rete group T 0h and this group 
ommutes with the map ~� de�ned by(7.25), i.e.(7.27) ~� Æ T 0h = T 0h Æ ~�42



Indeed, the assertion of the lemma is an immediate 
orollary of the fa
t that�(v)(Æl) � v(l).Note now that the topologi
al entropy hsp and the modi�ed topologi
al entropybhsp 
an be de�ned analogously to De�nition 7.1 for a dis
rete groups as well. More-over, the assertions of Lemma 7.1 and Remark 7.2 also remains valid for this 
ase.Consequently, (due to (7.24)) the map(7.28) ~� : (T 0h;M)! (T 0h; ~�(M)) � (T 0h;K )preserves the modi�ed topologi
al entropy(7.29) bhsp(T 0h;M) = bhsp(T 0h; ~�(M))Thus, for the 
ase of dis
rete group of shifts T 0h, we have 
onstru
ted the Lips
hitz
ontinuous embedding of the model dynami
al system (T 0h;M) to the dynami
alsystem (T 0h;K ). (see (7.2)).Combining this embedding with the embedding, 
onstru
ted in Theorem 7.2 weobtain the following result.Theorem 7.3. Let the assumptions of Theorem 7.2 be valid and let T 0h be a dis
retesubgroup of spatial shifts, h = Æl, l 2 Zn. Then the map � = ~U0 Æ ~� realizes aLips
hitz 
ontinuous (in weighted metri
s des
ribed in Corollary 7.2) isomorphismbetween M and �(M) � A whi
h preserves the a
tion of the group T 0h:(7.30) � : (T 0h;M)! (T 0h; �(M))and 
onsequently this homeomorphism preserves the modi�ed topologi
al entropy:(7.31) 0 < bhsp(M; T 0h) = bhsp(�(M); T 0h)Thus, we have 
onstru
ted the Lips
hitz 
ontinuous embedding of the modeldynami
al system (T 0h;M) to the dynami
al system (T 0h;A), generated by the dis-
rete spatial shifts on the attra
tor A of the equation (6.1). Note, that if we restri
tourselves to 
onsider only the subset MN �M of fun
tions v : Zn! fa1; � � �aNgwhere a1; � � � ; aN 2 D are arbitrary di�erent 
omplex numbers from the unitaryball, we obtain the standard symboli
 dynami
s with N symbols (multidimensionalBernulli shifts). Consequently Theorem 7.3 admits to embed the symboli
 dynami
swith N symbols into the dis
rete spatial shifts of the attra
tor A for every N 2 N.Moreover, the following theorem shows that an arbitrary finite dimensional (dis-
rete) dynami
s 
an be realized as a restri
tion of the dis
rete spatial shifts to theappropriate invariant subset of the attra
tor.Theorem 7.4. Let the assumptions of the previous theorem holds, let K � CN bean arbitrary 
ompa
t set in CN , and � : K ! K be a homeomorphism. De�ne adynami
al system fGn; n 2 Zg on K by iteration of this homeomorphism(7.32) Gnz := (�)nz; z 2 KThen there exists a homeomorphism � : K ! �(K) � A su
h that(7.33) � ÆGn = Tn~p Æ �; n 2 Z43



where ~p := NÆe1 = NÆ(1; 0; � � � ; 0) and Æ is the same as in Theorem 7.3.Proof. Due to Theorem 7.3 it is suÆ
ient to 
onstru
t only the embedding of thissystem to a model one (T 0h;M). Note also that without loss of generality we mayassume that K is a subset of N -dimensional polydis
 K � DN . Let us de�ne anembedding � : K !M by formula(7.34) �(z)(l1; l2; � � � ; ln) := Gn(z)k; where l 2 Zn;l1 = nN + k; n 2 Z; k 2 f0; 1; � � � ; N � 1g; z 2 K � DNIt is not diÆ
ult to verify that � : K ! �(K) � M is really a homeomorphism(sin
e Gn : K ! K are homeomorphisms). Moreover, it follows from the de�nitionof � that(7.35) �(Gnz) = TnNe1�(z); z 2 K; n 2 ZThe assertion of the theorem is an immediate 
orollary of (7.35) and Theorem 7.3.Remark 7.3. For simpli
ity we have formulated and proved the embedding the-orem 7.4 only for the dynami
al system (Gn;K) with one dimensional 'time' butit's generalization for the multidimensional 
ase is straightforward.x8 The temporal evolution of spatial 
haos andthe spatial 
omplexity of individual traje
toriesIn the previous se
tions we 
onstru
t a number of various invariant with respe
tto spatial shifts subsets B � A of the attra
tor the restri
tions of fTh; h 2 Rng towhi
h demonstrate the 
haoti
 behavior, have in�nite topologi
al entropy hsp(B) =1, positive modi�ed entropy bhsp(B) > 0 and so on. Note however that all sets thus
onstru
ted are not invariant with respe
t to the temporal dynami
s fSt; t � 0ggenerated by the equation (6.1) (in a fa
t the image ~U0(K ) 
onstru
ted in Theorem7.2 belongs to an exponentially unstable manifold of zero equilibria point). Thus,it seems reasonable to study the spatial 
omplexity of sets StB, t � 0, where B isa spatially invariant subset of the attra
tor A.We start with a trivial 
orollary of the estimates formulated in Theorem 2.3.Lemma 8.1. Let the assumptions of Theorem 6.2 hold and let B be a 
ompa
t in�lo
 invariant with respe
t to the spatial shifts fTh; h 2 Rng subset of the phasespa
e �b of the equation (6.1). Then(8.1) hsp(StB) � hsp(B); bhsp(StB) � bhsp(B); t � 0where St : �b ! �b is a semigroup, generated by the equation (6.1).Proof. Indeed, the set B is evidently bounded in �b and 
onsequently due to theestimate (2.61) and (1.3) the semigroup St is Lips
hitz 
ontinuous in the spa
e �b;�for every weight fun
tion whi
h satis�es the assumption (1.1). But the (modi�ed)topologi
al entropy does not in
rease under the Lips
hitz 
ontinuous mappings (seeRemark 7.2). Lemma 8.1 is proved.The main result of this Se
tion is the following theorem.44



Theorem 8.1. Let the assumptions of Theorem 6.1 hold and let in addition thematrix a in the equation (6.1) is normal, i.e.(8.2) aa� = a�aLet B be a 
ompa
t (in �lo
) invariant with respe
t to fTh; h 2 Rng subset ofthe attra
tor A. Then the quantitatives hsp(B) and bhsp(B) preserves under thetemporal dynami
s:(8.3) hsp(StB) = hsp(B) and bhsp(StB) = bhsp(B); t � 0Proof. The assertion of the theorem is a 
orollary of the following Lemma whi
h
laims that the semigroup St is ba
kward Holder 
ontinuous on the attra
tor withthe Holder exponent arbitrary 
lose to 1.Lemma 8.2. Let the above assertions hold and let u1(t); u2(t) 2 A, t 2 R be twoarbitrary solutions of (6.1) belonging to the attra
tor. Then for every 0 < � < 1and every �xed T > 0 there is " > 0 and a 
onstant C = C(�; T; ") su
h that(8.4) ku1(0)� u2(0); B1x0k2;q � C supx2
 e�"jx�x0jku1(T )� u2(T ); B1xk�0;2The proof of this Lemma is based on the following 
onvexity result, formulatedand proved in [2℄.Proposition 8.1 [2℄. Let H be a Hilbert spa
e and B : D(B) ! H be a linearunbounded operator in it. Let also v 2 C1([t0; t1℄; H)\C([t0; t1℄; D(B)) be a solutionof the following equation:(8.5) �tv �Bv = P (t)v; kP (t)kH!H � P0Assume also that B = B+ +B0� +B00�, where B+ is a symmetri
 operator and B0�and B00� are skew symmetri
 operators su
h that for every w 2 H(B+w;B0�w)H � �
kB+wkHkwkH � �kwk2H ;(8.6) kB00�wk2H � 
kB+wkHkwkH + �kwk2H(8.7)are satis�ed. Let us de�ne a new fun
tion(8.8) l(t) := 2 ln ku(t)kH � Z tt0  (s) ds;  (t) := 2(P (t)u(t); u(t))ku(t)k2HThen the following inequality holds for every t0 � t � t1(8.9) l(t) � ��l(t0) + (1� ��)l(t1) + e4
(t1�t0)(t1 � t0)2(8
2 + 4� + 2P 20 )where(8.10) �� := e�4
t1 � e�4
te�4
t1 � e�4
t0in (8.10) one takes the negative sign if l(t0) � l(t1) and the positive sign if l(t0) �l(t1). 45



Corollary 8.1. Let the assumptions of Lemma 8.1 hold and let it be known in addi-tion that the solution v(t) is de�ned on (�1; t1℄ and remain bounded: kv(t)kH � K.Then for every � > 0 and t 2 (�1; t1) there is a 
onstant C = C(t; t1; �;K) su
hthat(8.11) ku(t)kH � Cku(t1)k�H ; � := e4
(t�t1) � �Proof. Indeed, applying the exponent to the both sides of the inequality (8.9) andtaking into the a

ount that �2P0(t� t0) � R tt0  (s) ds � 2P0(t� t0) we derive that(8.12) ku(t)kH � C(t; t1; t0)ku(t1)k1���H ku(t2)k��HSin
e ku(t2)kH � K then (8.12) implies the estimate(8.13) ku(t)kH � C 0(K; t; t0; t1)ku(t1)k�Hwhere � = minf1 � �+; 1 � �+g. Let us �x now t2 = �N where N > 0 is largeenough. Then(8.14) � = 1� �+ = e4
t � e�4
Ne4
t1 � e�4
N ! e�4
(t1�t)when N ! 1. Therefore, for every � > 0 one 
an �nd N = N(�), su
h that� � e�4
(t1�t) � �. Corollary 8.1 is proved.Let us prove Lemma 8.1 now. Indeed, let v(t) := u1(t)�u2(t) then this fun
tionevidently satis�es the equation(8.15) �tv = a�xv � �0v � l(t)vwhere l(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds. Re
all, ui(t) are 
omplete boundedsolutions belonging to the attra
tor A, 
onsequently due to Theorems 2.1 and 3.1kui(t)kCb(Rn) � kuik�b � C and therefore the fun
tion l(t) is uniformly bounded:kl(t)kCb(Rn) � C1 and C1 is independent of ui.Fix now an arbitrary x0 2 Rn and 
onsider a fun
tion wx0(t) := v(t)~�";x0 wherethe weight fun
tion ~�";x0 is the same as in the proof of Lemma 6.1 and " is a smallparameter. Then it is not diÆ
ult to verify that this fun
tion satis�es the equation(8.16) �twx0(t)� a�xwx0(t) +K1(x)wx0 (t) +K2(x)rxwx0(t) + l(t)wx0(t) = 0where K1(x)w :=  �x ~�";x0~�";x0 � 2 jrx ~�";x0 j2~�2";x0 !aw(8.17) K2(x)rxw = 2~��1";x0rx ~�";x0 :arxw := 2~��1";x0 nXi=1 �xi ~�";x0a�xiw(8.18) 46



Moreover, it follows from (6.12) thatjKi(x)j+ jrxKi(x)j � C"for the appropriate 
onstant C.Let us verify now that the equation (8.16) satis�es all assumptions of Lemma8.1. Indeed, let H := [L2(Rn )℄k, Rw := K2(x)rxw,B+ = 1=2(a+a�)�x��0�1=2(R+R�); B0� := 1=2(a�a�)�x; B00� := �1=2(R�R�)and P (t)w := �K1(x)w � l(t)w. Then evidently B+ is symmetri
 and B0� and B00�are skew symmetri
. In order to verify the assumptions (8.6) and (8.7) we 
ompute�rstly the operator R�:(8.19) R�w := �2~��1";x0rx ~�";x0 :a�rxw � 2rx � �rx ~�";x0��1";x0�a�wand 
onsequently(8.20) (B+w;B0�w) = 1=4 ((a+ a�)�xw; (a � a�)�xw)�� �~��1";x0rx ~�";x0 :(a� a�)rxw; (a� a�)�xw�++ �rx �rx ~�";x0 ~��1";x0�a�w; (a� a�)�xw�Sin
e a is normal (see the assumption (8.2)) then the �rst term in the right-handside of (8.21) is equal to zero identi
ally. Integrating by parts in the se
ond termwe derive that(8.21) �~��1";x0rx ~�";x0 :(a� a�)rxw; (a� a�)�xw� == �1=2�rx(~��1";x0rx ~�";x0)(a� a�)rxw; (a� a�)rxw� � C"krxwk2HIt follows from the interpolation inequality, the regularity theorem for the Lapla
eoperator in Rn and from the fa
t that " > 0 is small enough that(8.22) krxwk2H � CkwkW 2;2(Rn)kwkH � C1kB+wkHkwkHAnd �nally due to the Holder inequality(8.23) �rx �rx ~�";x0 ~��1";x0�a�w; (a� a�)�xw� �� �C"kwkHk�xwkH � �C2"kB+wkHkwkHCombining the estimates (8.20){(8.23) we derive that(B+w;B0�w) � �
kB+wkHkwkH ; 
 = C"Thus, the assumption (8.6) is veri�ed. Let us verify the assumption (8.7). Indeed,sin
e B00� is a �rst order di�erential operator then due to (8.22)(8.24) kB00�wk2H � C" �krxwk2H + kwk2H� � C1"(kB+wkHkwkH + kwk2H)47



Thus, the assumption (8.7) is also veri�ed.Note also that ui(t) 2 A implies that kwx0(t)kL2(Rn) � K where K is indepen-dent of x0. Thus, all assumptions of Lemma 8.2 and Corollary 8.1 are veri�ed and
onsequently a

ording to (8.11) with t1 = T and t = �1(8.25) kwx0(�1)k0;2 � C("; �; T )kwx0(T )k�0;2here � := e�C"(T+1) � �, where � > 0 
an be 
hosen arbitrarily small and the
onstant C is independent of x0.Note also that sin
e "; � 
an be 
hosen arbitrarily small then the Holder exponent� < 1 in (8.25) is arbitrarily 
lose to 1.The estimate (8.25) immediately implies that(8.26) kv(�1); B1x0k0;2 � C 0(�; "; T ) supx2Rnkv(T ); B1xk�0;2where � is arbitrarily 
lose to 1 and " = "(�) > 0. The estimate (8.4) is animmediate 
orollary of (8.26) and of the smoothing property (2.61). Lemma 8.2 isproved.We are in a position now to 
omplete the proof of Theorem 8.1. To this end wenote that the estimate (8.4) implies that the restri
tion of ST ��A on the attra
tor Ais invertible and for every weight fun
tion � with a polynomial rate of growth andfor every 0 < � < 1 the operator S�1T ��A is uniformly Holder 
ontinuous with theexponent �(8.27) S�1T : A \ �b;� ! A\�b;��i.e. for every u1; u2 2 A(8.28) ku1 � u2k�b;�� � C(T; �)kSTu1 � STu2k��b;�and 
onsequently (due to Lemma 7.1 and the estimate (7.11))(8.29) bhsp(B) � �bhsp(STB); and hsp(B) = hsp(STB)Passing to the limit � ! 1 in (8.29) and taking into the a

ount the result ofLemma 8.1 we derive (8.3). Theorem 8.1 is proved.Remark 8.1. Re
all that we 
onstru
t in Se
tion 7 the set B = ~U0(K ) � A therestri
tion of spatial shifts on whi
h is isomorphi
 to the model dynami
s (Th;K )(or to (T 0h;M) for dis
rete spatial shifts). The estimate (8.28) implies now that theset STB � A is also homeomorphi
 to (Th;K ) (or (T 0h;M) respe
tively). Thus, thespatial 
haos 
onstru
ted in Se
tion 7 preserves under the time evolution fSt; t 2R+g.Let us study now the spatial 
omplexity of individual solutions u(t) 2 A of theequation (6.1). To this end we need the following de�nition.De�nition 8.1. Let u0 2 A. Denote by Hsp(u0) the hull of this point with respe
tto the spatial shifts:(8.30) Hsp(u0) := �Thu0; h 2 Rn��lo
where [�℄�lo
 means a 
losure in the spa
e �lo
, and de�ne the quantitatives hsp(u0)and bhsp(u0) by the following expressions:(8.31) hsp(u0) := hsp(Hsp(u0)); bhsp(u0) := bhsp(Hsp(u0))(see De�nition 7.1).The following Corollary shows that the quantitatives (8.31) are 
onstants alongthe traje
tories of (6.1). 48



Corollary 8.2. Let the assumptions of Theorem 8.1 be valid. Then for everyu0 2 A the following is true:(8.32) hsp(Stu0) = hsp(u0); bhsp(Stu0) = bhsp(u0); t � 0Moreover, the quantity bhsp(u0) is �nite for every u0 2 A and there is a point u0 2 Asu
h that(8.33) hsp(u0) =1; bhsp(u0) > C > 0Proof. Indeed, the assertions (8.32) are immediate 
orollaries of Theorem 8.1. Thus,it remains only to verify the existen
e of a point u0 whi
h satis�es (8.33). To thisend we re
all that due to Theorem 7.3 it is suÆ
ient to �nd a point v0 2 M su
hthat it's hull (with respe
t to dis
rete shifts group fT 0h; h 2 Zng has a positivemodi�ed topologi
al entropy. But it is not diÆ
ult to verify that the spa
e Mpossesses a topologi
ally transitive orbit, i.e., there exists v0 2 M su
h that(8.34) M = �T 0hv0; h 2 Zn�Mlo
Fixing now u0 := �(v0) � A, where � :M!A is de�ned in Theorem 7.3 we obtaina point of A whi
h satis�es (8.33). Corollary 8.3 is proved.Remark 8.2. It follows from the proof of Corollary 8.2 that there is a pointu0 2 A with an extremely 
ompli
ated spatial stru
ture. Parti
ularly (T 0h;M) �(T 0h;Hsp(u0)) and 
onsequently due to Theorem 7.4 any �nite dimensional dynami
s
an be realized by restri
ting the dis
rete spatial shifts group to the appropriatesubset of the hull Hsp(u0) of this point.In 
on
lusion of the paper we illustrate the obtained results on the parti
ular
ase of Ginzburg-Landau equation.Example 8.1. Consider the equation(8.35) �tu = (1 + i�)�xu+Ru� (1 + i�)ujuj2�; x 2 Rnwhere u = u(t; x) = u1(t; x) + iu2(t; x) is a 
omplex valued unknown fun
tion�; � 2 R, R > 0 and � > 0 (see [25℄ and referen
es therein).It is not diÆ
ult to verify that our monotoni
ity assumption f 0(u) � �C issatis�ed if(8.36) j�j � p2� + 1�the rest of the assumptions of (2.2) are satis�ed for every �; � and � > 1=2. Thegrowth restri
tion (2.3) is valid for every � if n � 4 and for � < 2=(n� 4) if n > 4.Thus, for n � 4 Theorems 2.1, 2.2 and 3.1 give the existen
e of solutions for(8.35), their L1-bounds and the attra
tor's existen
e if (8.36) is satis�ed (� isarbitrary and � > 1=2).Note that zero equilibria point u � 0 of the equation (8.35) is evidently expo-nentially unstable if R > 0. Thus, the assumptions of Theorem 6.2 is also satis�ed(if n � 4, (8.36) is valid, � > 1=2 and � is arbitrary) and 
onsequently the entropy49



of the 
orresponding attra
tor possesses the upper and lower bounds (6.53) and(6.54).Note also that the assumption (8.2) is also evidently satis�ed for the equation(8.35) (written as a system with respe
t to real valued unknown variables u =(u1; u2)). Consequently, the results of Se
tions 7 and 8 are also valid under theabove assumptions.Remark 8.3. Note that we need the assumptions (2.2) and (2.3) in a fa
t onlyin order to establish the L1-bounds of solutions. If these bounds are known fromsomewhere then the results of Se
tions 3{8 remains valid without the restri
tions(2.2) and (2.3). Parti
ularly, the L1-estimates for the 
omplex Ginzburg-Landauequation (8.35) under di�erent assumptions on �; �; � and n 
an be found in [19℄,[26℄, [27℄. Consequently, the results of the paper remains valid for (8.35) under thatassumptions as well. 8 July, 2000Referen
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